GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ijichi, Hideaki  (2)
  • Kinoshita, Hiroto  (2)
  • Sakamoto, Kei  (2)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 3 ( 2014-01-21), p. 1090-1095
    Abstract: E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial–mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial–mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Science, Wiley, Vol. 104, No. 3 ( 2013-03), p. 337-344
    Abstract: c‐Jun N‐terminal kinase ( JNK ) is a member of the mitogen‐activated protein kinase ( MAPK ) family, and it is reportedly involved in the development of several cancers. However, the role of JNK in pancreatic cancer has not been elucidated. We assessed t he involvement of JNK in the development of pancreatic cancer and investigated the therapeutic effect of JNK inhibitors on this deadly cancer. Small interfering RNA s against JNK or the JNK inhibitor SP 600125 were used to examine the role of JNK in cellular proliferation and the cell cycles of pancreatic cancer cell lines. Ptf1a cre/ + ; LSL ‐Kras G12D/ + ;Tgfbr2 flox/flox mice were treated with the JNK inhibitor to examine pancreatic histology and survival. The effect of JNK inhibition on tumor angiogenesis was also assessed using cell lines and murine pancreatic cancer specimens. JNK was frequently activated in human and murine pancreatic cancer in vitro and in vivo . Growth of human pancreatic cancer cell lines was suppressed by JNK inhibition through G1 arrest in the cell cycle with decreased cyclin D1 expression. In addition, oncogenic K‐ras expression led to activation of JNK in pancreatic cancer cell lines. Treatment of Ptf1a cre/ + ; LSL ‐Kras G12D/ + ;Tgfbr2 flox/flox mice with the JNK inhibitor decreased growth of murine pancreatic cancer and prolonged survival of the mice significantly. Angiogenesis was also decreased by JNK inhibition in vitro and in vivo . In conclusion, activation of JNK promotes development of pancreatic cancer, and JNK may be a potential therapeutic target for pancreatic cancer.
    Type of Medium: Online Resource
    ISSN: 1347-9032 , 1349-7006
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2115647-5
    detail.hit.zdb_id: 2111204-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...