GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Hufendiek, Kai  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Energies Vol. 14, No. 3 ( 2021-02-02), p. 786-
    In: Energies, MDPI AG, Vol. 14, No. 3 ( 2021-02-02), p. 786-
    Abstract: Electric vehicles represent a promising opportunity to achieve greenhouse gas (GHG) reduction targets in the transport sector. Integrating them comprehensively into the energy system requires smart control strategies for the charging processes. In this paper we concentrate on charging processes at the end users home. From the perspective of an end user, optimizing of charging electric vehicles might strive for different targets: cost minimization of power purchase for the individual household or—as proposed more often recently—minimization of GHG emissions. These targets are sometimes competing and cannot generally be achieved at the same time as the results show. In this paper, we present approaches of considering these targets by controlling charging processes at the end users home. We investigate the influence of differently designed optimizing charging strategies for this purpose, considering the electrical purchase cost as well as the GHG emissions and compare them with the conventional uncontrolled charging strategy using the example of a representative household of a single family. Therefore, we assumed a detailed trip profile of such a household equipped with a local generation and storage system at the same time. We implemented the mentioned strategies and compare the results concerning effects on annual GHG emissions and annual energy purchase costs of the household. Regarding GHG emissions we apply a recently proposed approach by other authors based on hourly emission factors. We discuss the effectivity of this approach and derive, that there is hardly no real impact on actual GHG emissions in the overall system. As incorporating this GHG target into the objective function increases cost, we appraise such theoretical GHG target therefore counterproductive. In conclusion, we would thus like to appeal for dynamic electricity prices for decentralised energy systems, leading at the same time to cost efficient charging of electric vehicles unfolding clear incentives for end users, which is GHG friendly at the end.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Energies Vol. 13, No. 11 ( 2020-06-01), p. 2752-
    In: Energies, MDPI AG, Vol. 13, No. 11 ( 2020-06-01), p. 2752-
    Abstract: Heat pumps are a vital element for reaching the greenhouse gas (GHG) reduction targets in the heating sector, but their system integration requires smart control approaches. In this paper, we first offer a comprehensive literature review and definition of the term control for the described context. Additionally, we present a control approach, which consists of an optimal scheduling module coupled with a detailed energy system simulation module. The aim of this integrated two-part control approach is to improve the performance of an energy system equipped with a heat pump, while recognizing the technical boundaries of the energy system in full detail. By applying this control to a typical family household situation, we illustrate that this integrated approach results in a more realistic heat pump operation and thus a more realistic assessment of the control performance, while still achieving lower operational costs.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...