GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Huang, Zhenfeng  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Applied Sciences, MDPI AG, Vol. 11, No. 1 ( 2020-12-25), p. 153-
    Abstract: The hydropower units have a complex structure, complicated and changing working conditions, complexity and a diversity of faults. Effectively evaluating the healthy operation status and accurately predicting the failure for the hydropower units using the real-time monitoring data is still a difficult problem. To this end, this paper proposes a prediction method for the early failure of hydropower units based on Gaussian process regression (GPR). Firstly, by studying the correlation between different monitoring data, nine state parameters closely related to the operation of hydropower units are mined from the massive data. Secondly, a health evaluation model is established based on GPR using the historical multi-dimensional monitoring information and fault-free monitoring data at the initial stage of unit operation. Finally, a condition monitoring directive based on the Mahalanobis distance (MD) is designed. The effectiveness of the proposed method is verified by several typical examples of monitoring data of a hydropower station in Guangxi, China. The results show that, in three cases, the abnormal conditions of the unit are found 2 days, 4 days and 43 days earlier than those of regular maintenances respectively. Therefore, the method can effectively track the change process of the operation state of hydropower units, and detect the abnormal operation state of hydropower units in advance.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Applied Sciences Vol. 12, No. 3 ( 2022-01-25), p. 1236-
    In: Applied Sciences, MDPI AG, Vol. 12, No. 3 ( 2022-01-25), p. 1236-
    Abstract: An ultrasonic coupling agent, as an acoustic medium between the ultrasonic probe and the surface of the specimens, is indispensable in Nondestructive Testing (NDT). Whether it is liquid, air, or solid coupling agent, the problem of improving the efficiency of ultrasonic propagation in a coupling agent is one worth studying. Glycerol and hydrogels are two common liquid coupling agents in NDT. This study intended to investigate the effect of graphene addition on the performance of these coupling agents in NDT. Firstly, based on the theory of acoustic impedance matching, the authors established an index system to evaluate the performance of ultrasonic coupling agent by experiments. Secondly, hydrogel–graphene and glycerol–graphene composite coupling agents were prepared by adding three-dimensional graphene structure powders with mass fraction of 0.25%, 0.5%, 0.75%, and 1% to CG-98 hydrogel coupling agent and HG-99 glycerol coupling agent, respectively. Corresponding experiments were conducted on these composite coupling agents. Peak-to-peak value, attenuation coefficient, and energy value of first echo are calculated at different frequencies. The experimental results showed that graphene can significantly improve the ultrasonic propagation performance of hydrogel and glycerin coupling agents. In addition, when the mass fraction of graphene added was 0.75%, the coupling agent had the best performance. Finally, we measured the acoustic impedance values of the composite couplings with different graphene contents to demonstrate the reliability of the experimental results.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...