GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • Huang, Wei  (5)
Material
Publisher
  • MDPI AG  (5)
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Nanomaterials Vol. 12, No. 23 ( 2022-11-30), p. 4256-
    In: Nanomaterials, MDPI AG, Vol. 12, No. 23 ( 2022-11-30), p. 4256-
    Abstract: In this work, the atomic level doping of Sn into Ga2O3 films was successfully deposited by using a plasma-enhanced atomic layer deposition method. Here, we systematically studied the changes in the chemical state, microstructure evolution, optical properties, energy band alignment, and electrical properties for various configurations of the Sn-doped Ga2O3 films. The results indicated that all the films have high transparency with an average transmittance of above 90% over ultraviolet and visible light wavelengths. X-ray reflectivity and spectroscopic ellipsometry measurement indicated that the Sn doping level affects the density, refractive index, and extinction coefficient. In particular, the chemical microstructure and energy band structure for the Sn-doped Ga2O3 films were analyzed and discussed in detail. With an increase in the Sn content, the ratio of Sn–O bonding increases, but by contrast, the proportion of the oxygen vacancies decreases. The reduction in the oxygen vacancy content leads to an increase in the valence band maximum, but the energy bandgap decreases from 4.73 to 4.31 eV. Moreover, with the increase in Sn content, the breakdown mode transformed the hard breakdown into the soft breakdown. The C-V characteristics proved that the Sn-doped Ga2O3 films have large permittivity. These studies offer a foundation and a systematical analysis for assisting the design and application of Ga2O3 film-based transparent devices.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceuticals, MDPI AG, Vol. 15, No. 10 ( 2022-10-02), p. 1224-
    Abstract: Vascular calcification (VC) is a common pathophysiological process of chronic kidney disease (CKD). Sirtuin 3 (Sirt3), a major NAD+-dependent protein deacetylase predominantly in mitochondria, is involved in the pathogenesis of VC. We previously reported that intermedin (IMD) could protect against VC. In this study, we investigated whether IMD attenuates VC by Sirt3-mediated inhibition of mitochondrial oxidative stress. A rat VC with CKD model was induced by the 5/6 nephrectomy plus vitamin D3. Vascular smooth muscle cell (VSMC) calcification was induced by CaCl2 and β-glycerophosphate. IMD1-53 treatment attenuated VC in vitro and in vivo, rescued the depressed mitochondrial membrane potential (MMP) level and decreased mitochondrial ROS levels in calcified VSMCs. IMD1-53 treatment recovered the reduced protein level of Sirt3 in calcified rat aortas and VSMCs. Inhibition of VSMC calcification by IMD1-53 disappeared when the cells were Sirt3 absent or pretreated with the Sirt3 inhibitor 3-TYP. Furthermore, 3-TYP pretreatment blocked IMD1-53-mediated restoration of the MMP level and inhibition of mitochondrial oxidative stress in calcified VSMCs. The attenuation of VSMC calcification by IMD1-53 through upregulation of Sirt3 might be achieved through activation of the IMD receptor and post-receptor signaling pathway AMPK, as indicated by pretreatment with an IMD receptor antagonist or AMPK inhibitor blocking the inhibition of VSMC calcification and upregulation of Sirt3 by IMD1-53. AMPK inhibitor treatment reversed the effects of IMD1-53 on restoring the MMP level and inhibiting mitochondrial oxidative stress in calcified VSMCs. In conclusion, IMD attenuates VC by improving mitochondrial function and inhibiting mitochondrial oxidative stress through upregulating Sirt3.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 8, No. 12 ( 2018-12-05), p. 1008-
    Abstract: In this study, silicon nitride (SiNx) thin films with different oxygen concentration (i.e., SiON film) were precisely deposited by plasma enhanced atomic layer deposition on Si (100) substrates. Thus, the effect of oxygen concentration on film properties is able to be comparatively studied and various valuable results are obtained. In detail, x-ray reflectivity, x-ray photoelectron spectroscopy, atomic force microscopy, and spectroscopic ellipsometry are used to systematically characterize the microstructural, optical, and electrical properties of SiON film. The experimental results indicate that the surface roughness increases from 0.13 to 0.2 nm as the oxygen concentration decreases. The refractive index of the SiON film reveals an increase from 1.55 to 1.86 with decreasing oxygen concentration. Accordingly, the band-gap energy of these films determined by oxygen 1s-peak analysis decreases from 6.2 to 4.8 eV. Moreover, the I-V tests demonstrate that the film exhibits lower leakage current and better insulation for higher oxygen concentration in film. These results indicate that oxygen affects microstructural, optical, and electrical properties of the prepared SiNx film.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Genes Vol. 12, No. 6 ( 2021-06-02), p. 856-
    In: Genes, MDPI AG, Vol. 12, No. 6 ( 2021-06-02), p. 856-
    Abstract: MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cells, MDPI AG, Vol. 11, No. 7 ( 2022-03-22), p. 1067-
    Abstract: Non-alcoholic fatty liver disease (NAFLD) held a high global prevalence in recent decades. Hepatic lipid deposition is the major characteristic of NAFLD. We aim to explore the mechanisms of psoralen on lipid deposition in NAFLD. The effects of psoralen on insulin resistance, lipid deposition, the expression and membrane translocation of glucose transporter type 4 (GLUT4), autophagy, and lipogenesis enzymes were determined on sodium oleate-induced L02 cells. Chloroquine and 3-MA were employed. The AMP-activated protein kinase alpha (AMPKα) was knocked down by siRNA. Psoralen alleviated insulin resistance in sodium oleate-induced L02 hepatocytes by upregulating the expression and membrane translocation of GLUT4. Psoralen inhibited lipid accumulation by decreasing the expression of key lipogenesis enzymes. Psoralen promotes autophagy and the autophagic flux to enhance lipolysis. Psoralen promoted the fusion of the autophagosome with the lysosome. Both chloroquine and 3-MA blocked the effects of psoralen on autophagy and lipid accumulation. The AMPKα deficiency attenuated the effects of psoralen on autophagy and lipid accumulation. Our study demonstrated that as an antioxidant, psoralen attenuates NAFLD by alleviating insulin resistance and promoting autophagy via AMPK, suggesting psoralen to be a promising candidate for NAFLD.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...