GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Huang, Hsiao-Ling  (4)
  • Yang, Ming-Jen  (4)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of the Atmospheric Sciences Vol. 71, No. 1 ( 2014-01-01), p. 112-129
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 71, No. 1 ( 2014-01-01), p. 112-129
    Abstract: In this study, the Weather Research and Forecasting model, version 3.2, with the finest grid size of 1 km is used to explicitly simulate Typhoon Morakot (2009), which dumped rainfall of more than 2600 mm in 3 days on Taiwan. The model reasonably reproduced the track, the organization, the sizes of the eye and eyewall, and the characteristics of major convective cells in outer rainbands. The horizontal rainfall distribution and local rainfall maximum in the southwestern portion of the Central Mountain Range (CMR) are captured. The simulated rain rate and precipitation efficiency (PE) over the CMR are highly correlated. In the absence of terrain forcing, the simulated TC’s track is farther north and rainfall distribution is mainly determined by rainbands. The calculated rain rate and PE over the CMR during landfall are about 50% and 15%–20% less than those of the full-terrain control run, respectively. By following major convective cells that propagate eastward from the Taiwan Strait to the CMR, it is found that the PE and the processes of vapor condensation and raindrop evaporation are strongly influenced by orographic lifting; the PEs are 60%–75% over ocean and more than 95% over the CMR, respectively. The secondary increase of PE results from the increase of ice-phase deposition ratio when the liquid-phase condensation becomes small as the air on the lee side subsides and moves downstream. This nearly perfect PE over the CMR causes tremendous rainfall in southwestern Taiwan, triggering enormous landslides and severe flooding.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of the Atmospheric Sciences Vol. 65, No. 10 ( 2008-10), p. 3095-3115
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 65, No. 10 ( 2008-10), p. 3095-3115
    Abstract: Although there have been many observational and modeling studies of tropical cyclones, understanding of their intensity and structural changes after landfall is rather limited. In this study, several 84-h cloud-resolving simulations of Typhoon Nari (2001), a typhoon that produced torrential rainfall of more than 1400 mm over Taiwan, are carried out using a quadruply nested–grid mesoscale model whose finest grid size was 2 km. It is shown that the model reproduces reasonably well Nari’s kinematic and precipitation features as well as structural changes, as verified against radar and rain gauge observations. These include the storm track, the contraction and sizes of the eye and eyewall, the spiral rainbands, the rapid pressure rise (∼1.67 hPa h −1 ) during landfall, and the nearly constant intensity after landfall. In addition, the model captures the horizontal rainfall distribution and some local rainfall maxima associated with Taiwan’s orography. A series of sensitivity experiments are performed in which Taiwan’s topography is reduced to examine the topographic effects on Nari’s track, intensity, rainfall distribution, and amount. Results show that the impact of island terrain on Nari’s intensity is nearly linear, with stronger storm intensity but less rainfall in lower-terrain runs. In contrast, changing the terrain heights produces nonlinear tracks with circular shapes and variable movements associated with different degrees of blocking effects. Parameter and diagnostic analyses reveal that the nonlinear track dependence on terrain heights results from the complex interactions between the environmental steering flow, Nari’s intensity, and Taiwan’s topography, whereas the terrain-induced damping effects balance the intensifying effects of latent heat release associated with the torrential rainfall in maintaining the near-constant storm intensity after landfall.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Hydrometeorology Vol. 6, No. 3 ( 2005-06-01), p. 306-323
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 6, No. 3 ( 2005-06-01), p. 306-323
    Abstract: A physically based distributed hydrological model was applied to simulate typhoon floods over a mountainous watershed in Taiwan. The meteorological forcings include the observed gauge rainfall data and the predicted rainfall data from a mesoscale meteorological model, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). This study investigates the flood responses of three Typhoons: Zeb (1998), Nari (2001), and Herb (1996), which possessed unique meteorological features and that all produced severe floods. The predicted basin-averaged rainfall hydrographs by the MM5 are compared with that interpreted by rain gauge data to reveal the discrepancies in rainfall peak amounts and time lags, and to explore their subsequent effects on flood generation. The simulated flood hydrographs at the Hsia-Yun station, which is upstream of the Shihmen Reservoir, are compared with observed flood discharges in terms of the amount and time lag of flood peaks. It is shown that the small discrepancy in rainfall peaks and phase lags could be significantly amplified in simulated flood responses of a mountainous watershed. The overall predictive skill of the distributed hydrological model with different rainfall inputs is examined with three parameters, which include the runoff ratio (RR), root-mean-square error (rmse), and goodness of fit (GOF). Although the runoff ratio for the MM5-predicted rainfall is superior to that for the observed gauge rainfall, the simulated hydrographs with observed gauge rainfall have smaller rmse and GOF values for three events. This study shows that the error in flood prediction with the mesoscale-modeled rainfall is mainly caused by the rainfall–peak difference, which arises from the inherent uncertainties in the mesoscale-modeled rainfalls over a mountainous terrain during the typhoon landfall periods.
    Type of Medium: Online Resource
    ISSN: 1525-7541 , 1525-755X
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of the Atmospheric Sciences Vol. 62, No. 12 ( 2005-12-01), p. 4358-4370
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 62, No. 12 ( 2005-12-01), p. 4358-4370
    Abstract: Precipitation efficiency is estimated based on vertically integrated budgets of water vapor and clouds using hourly data from both two-dimensional (2D) and three-dimensional (3D) cloud-resolving simulations. The 2D cloud-resolving model is forced by the vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The 3D cloud-resolving modeling is based on the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) simulation of Typhoon Nari (in 2001). The analysis of the hourly moisture and cloud budgets of the 2D simulation shows that the total moisture source (surface evaporation and vertically integrated moisture convergence) is converted into hydrometeors through vapor condensation and deposition rates regardless of the area size where the average is taken. This leads to the conclusion that the large-scale and cloud-microphysics precipitation efficiencies are statistically equivalent. Results further show that convergence (divergence) of hydrometeors would make precipitation efficiency larger (smaller). The precipitation efficiency tends to be larger (even & gt;100%) in light rain conditions as a result of hydrometeor convergence from the neighboring atmospheric columns. Analysis of the hourly moisture and cloud budgets of the 3D results from the simulation of a typhoon system with heavy rainfall generally supports that of 2D results from the simulation of the tropical convective system with moderate rainfall intensity.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...