GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Liver Transplantation, Ovid Technologies (Wolters Kluwer Health), Vol. 25, No. 7 ( 2019-07), p. 1074-1090
    Abstract: Hyperglycemia aggravates hepatic ischemia/reperfusion injury (IRI), but the underlying mechanism for the aggravation remains elusive. Sphingosine‐1‐phosphate (S1P) and sphingosine‐1‐phosphate receptors (S1PRs) have been implicated in metabolic and inflammatory diseases. Here, we discuss whether and how S1P/S1PRs are involved in hyperglycemia‐related liver IRI. For our in vivo experiment, we enrolled diabetic patients with benign hepatic disease who had liver resection, and we used streptozotocin (STZ)–induced hyperglycemic mice or normal mice to establish a liver IRI model. In vitro bone marrow–derived macrophages (BMDMs) were differentiated in high‐glucose (HG; 30 mM) or low‐glucose (LG; 5 mM) conditions for 7 days. The expression of S1P/S1PRs was analyzed in the liver and BMDMs. We investigated the functional and molecular mechanisms by which S1P/S1PRs may influence hyperglycemia‐related liver IRI. S1P levels were higher in liver tissues from patients with diabetes mellitus and mice with STZ‐induced diabetes. S1PR3, but not S1PR1 or S1PR2, was activated in liver tissues and Kupffer cells under hyperglycemic conditions. The S1PR3 antagonist CAY10444 attenuated hyperglycemia‐related liver IRI based on hepatic biochemistry, histology, and inflammatory responses. Diabetic livers expressed higher levels of M1 markers but lower levels of M2 markers at baseline and after ischemia/reperfusion. Dual‐immunofluorescence staining showed that hyperglycemia promoted M1 (CD68/CD86) differentiation and inhibited M2 (CD68/CD206) differentiation. Importantly, CAY10444 reversed hyperglycemia‐modulated M1/M2 polarization. HG concentrations in vitro also triggered S1P/S1PR3 signaling, promoted M1 polarization, inhibited M2 polarization, and enhanced inflammatory responses compared with LG concentrations in BMDMs. In contrast, S1PR3 knockdown significantly retrieved hyperglycemia‐modulated M1/M2 polarization and attenuated inflammation. In conclusion, our study reveals that hyperglycemia specifically triggers S1P/S1PR3 signaling and exacerbates liver IRI by facilitating M1 polarization and inhibiting M2 polarization, which may represent an effective therapeutic strategy for liver IRI in diabetes.
    Type of Medium: Online Resource
    ISSN: 1527-6465 , 1527-6473
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 2002186-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  International Immunology Vol. 32, No. 5 ( 2020-05-08), p. 321-334
    In: International Immunology, Oxford University Press (OUP), Vol. 32, No. 5 ( 2020-05-08), p. 321-334
    Abstract: Intrahepatic cholestasis induced by drug toxicity may cause cholestatic hepatic injury (CHI) leading to liver fibrosis and cirrhosis. The G protein-coupled bile acid receptor 1 (TGR5) is a membrane receptor with well-known roles in the regulation of glucose metabolism and energy homeostasis. However, the role and mechanism of TGR5 in the context of inflammation during CHI remains unclear. Wild-type (WT) and TGR5 knockout (TGR5−/−) mice with CHI induced by bile duct ligation (BDL) were involved in vivo, and WT and TGR5−/− bone marrow-derived macrophages (BMDMs) were used in vitro. TGR5 deficiency significantly exacerbated BDL-induced liver injury, inflammatory responses and hepatic fibrosis compared with WT mice in vivo. TGR5−/− macrophages were more susceptible to lipopolysaccharide (LPS) stimulation than WT macrophages. TGR5 activation by its ligand suppressed LPS-induced pro-inflammatory responses in WT but not TGR5−/− BMDMs. Notably, expression of β-catenin was effectively inhibited by TGR5 deficiency. Furthermore, TGR5 directly interacted with Gsk3β to repress the interaction between Gsk3β and β-catenin, thus disrupting the β-catenin destruction complex. The pro-inflammatory nature of TGR5-knockout was almost abolished by lentivirus-mediated β-catenin overexpression in BMDMs. BMDM migration in vitro was accelerated under TGR5-deficient conditions or supernatant from LPS-stimulated TGR5−/− BMDMs. From a therapeutic perspective, TGR5−/− BMDM administration aggravated BDL-induced CHI, which was effectively rescued by β-catenin overexpression. Our findings reveal that TGR5 plays a crucial role as a novel regulator of immune-mediated CHI by destabilizing the β-catenin destruction complex, with therapeutic implications for the management of human CHI.
    Type of Medium: Online Resource
    ISSN: 1460-2377
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1467474-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 8, No. 8 ( 2017-08-17), p. e2999-e2999
    Abstract: Metastasis is the major cause of the poor prognosis of hepatocellular carcinoma (HCC), and increasing evidence supports the contribution of miRNAs to cancer progression. However, the exact relationship between the level of miR-1301 expression and HCC cell migration, invasion, and angiogenesis remains largely unknown. Quantitative PCR was used to evaluate the level of miR-1301 expression in HCC tissues and cell lines. Transwell and tube-formation assays were used to measure the effects of miR-1301 on HCC cell migration and invasion, and angiogenesis, respectively. Luciferase reporter assays and western blotting were used to confirm the miR-1301 target genes. We found that miR-1301 was significantly downregulated in HCC tissues and cell lines. Low miR-1301 expression was associated with tumor vascular invasion and Edmondson grade. Gain- and loss-of-function assays demonstrated that miR-1301 inhibited the migration, invasion, epithelial–mesenchymal transition, and angiogenesis of HCC cells in vitro and in vivo . BCL9, upregulated in HCC tissues compared with matched adjacent normal tissues, was inversely correlated to miR-1301 levels in HCC tissues. Through reporter gene and western blot assays, BCL9 was shown to be a direct miR-1301 target. BCL9 overexpression could partially reverse the effects of miR-1301 on HCC cell migration and invasion. Most importantly, miR-1301 overexpression markedly suppressed the death of xenograft mouse models of cancer by reducing tumor load, metastasis, and host angiogenesis by downregulating BCL9, β -catenin, and vascular endothelial growth factor expression in tumor cells. Our observations suggested that miR-1301 inhibits HCC migration, invasion, and angiogenesis via decreasing Wnt/ β -catenin signaling through targeting BCL9, and might be a therapeutic target for HCC.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Cell Death Discovery Vol. 8, No. 1 ( 2022-03-14)
    In: Cell Death Discovery, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2022-03-14)
    Abstract: Although hyperglycemia has been documented as an unfavorable element that can further induce liver ischemia–reperfusion injury (IRI), the related molecular mechanisms remain to be clearly elaborated. This study investigated the effective manner of endoplasmic reticulum (ER) stress signaling in hyperglycemia-exacerbated liver IRI. Here we demonstrated that in the liver tissues and Kupffer cells (KCs) of DM patients and STZ-induced hyperglycemic mice, the ER stress-ATF6-CHOP signaling pathway is activated. TLR4-mediated pro-inflammatory activation was greatly attenuated by the addition of 4-phenylbutyrate (PBA), one common ER stress inhibitor. The liver IRI in hyperglycemic mice was also significantly reduced after PBA treatment. In addition, deficiency of CHOP (CHOP −/− ) obviously alleviates the hepatic IRI, and pro-inflammatory effects deteriorated by hyperglycemia. In hyperglycemic mice, β-catenin expression was suppressed while the ATF6-CHOP signal was activated. In the liver tissues of PBA-treated or CHOP −/− hyperglycemic mice, the expression of β-catenin was restored. Furthermore, CHOP deficiency can induce protection against hyperglycemia-related liver IRI, which was disrupted by the knockdown of β-catenin will cause this protection to disappear. High glucose (HG) treatment stimulated ATF6-CHOP signaling, reduced cellular β-catenin accumulation, and promoted the TLR4-related inflammation of BMDMs. But the above effects were partially rescued in BMDMs with CHOP deficiency or by PBA treatment. In BMDMs cultured in HG conditions, the anti-inflammatory functions of CHOP −/− were destroyed by the knockdown of β-catenin. Finally, chimeric mice carrying WT or CHOP −/− BMDMs by bone marrow transplantation were adopted to verify the above conclusion. The current study suggested that hyperglycemia could trigger ER stress-ATF6-CHOP axis, inhibit β-catenin activation, accelerate inflammation, and deteriorate liver IRI, thus providing the treatment potential for management of sterile liver inflammation in DM patients.
    Type of Medium: Online Resource
    ISSN: 2058-7716
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2842546-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Immunology, Oxford University Press (OUP), Vol. 34, No. 1 ( 2022-01-01), p. 53-53
    Type of Medium: Online Resource
    ISSN: 1460-2377
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1467474-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 9, No. 11 ( 2018-10-30)
    Abstract: Mounting evidence demonstrates that expression of ERO1α, an endoplasmic reticulum (ER)-resident oxidase, is a poor prognosis factor in a variety of human cancers. However, the clinical relevance of ERO1α and its molecular mechanisms underlying tumor progression have not been determined for hepatocellular carcinoma (HCC). ERO1α expression levels in HCC tissues and cells were detected by quantitative real-time PCR and western blotting. ERO1α shRNAs and overexpression vector were transfected into HCC cells to downregulate or upregulate ERO1α expression. In vitro and in vivo assays were performed to investigate the function of ERO1α in invasion, metastasis, and angiogenesis of HCC. We found high ERO1α expression in HCC tissues and cells that was significantly associated with metastasis and poor clinicopathologic features of vascular invasion, advanced Edmondson Grade, and TNM stage. Loss-of-function and gain-of-function studies showed that ERO1α prompted migration, invasion, epithelial–mesenchymal transition (EMT), and angiogenesis of HCC cells both in vitro and in vivo. Further studies verified a positive correlation between ERO1α and S1PR1, upregulated in metastatic HCC tissues compared with HCC tissues without metastasis. S1PR1 knockdown markedly diminished the effects of ERO1α on HCC cell migration, invasion and vascular endothelial growth factor (VEGF) expression. Most importantly, ERO1α knockdown significantly repressed the death of HCC xenograft mouse models by reducing tumor distant metastasis, and host angiogenesis by suppressing the expression of S1PR1, p-STAT3, and VEGF-A in HCC cells. Our findings suggest that ERO1α is significantly correlated with reduced survival and poor prognosis, and promotes HCC metastasis and angiogenesis by triggering the S1PR1/STAT3/VEGF-A signaling pathway. ERO1α might be a novel candidate in HCC prognosis and therapy.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 9, No. 10 ( 2018-09-20)
    Abstract: Growing evidence suggests that aberrant microRNA (miRNA) expression contributes to hepatocellular carcinoma (HCC) development and progression. However, the potential role and mechanism of miR-665 in the progression of liver cancer remains largely unknown. Our current study showed that miR-665 expression was upregulated in HCC cells and tissues. High expression of miR-665 exhibited more severe tumor size, vascular invasion and Edmondson grading in HCC patients. Gain- or loss-of-function assays demonstrated that miR-665 promoted cell proliferation, migration, invasion, and the epithelial–mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Tyrosine phosphatase receptor type B (PTPRB) was downregulated in HCC tissues, and was negatively correlated with miR-665 expression. Through western blotting and luciferase reporter assay, PTPRB was identified as a direct downstream target of miR-665. Restoration of PTPRB reverses the effects of miR-665 on HCC migration, invasion, and cell proliferation. A mechanistic study showed that PTPTRB mediated the functional role of miR-665 through regulation of the Hippo signaling pathway. In conclusion, our results suggested that miR-665 was a negative regulator of the PTPRB and could promote tumor proliferation and metastasis in HCC through decreasing Hippo signaling pathway activity, which can be a potential target for HCC treatment.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...