GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hu, Xiuqing  (6)
  • Wu, Ronghua  (6)
  • Zhang, Peng  (6)
  • 1
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2022
    In:  IEEE Transactions on Geoscience and Remote Sensing Vol. 60 ( 2022), p. 1-10
    In: IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 60 ( 2022), p. 1-10
    Type of Medium: Online Resource
    ISSN: 0196-2892 , 1558-0644
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2022
    detail.hit.zdb_id: 2027520-1
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Journal of Meteorological Research Vol. 33, No. 5 ( 2019-10), p. 925-933
    In: Journal of Meteorological Research, Springer Science and Business Media LLC, Vol. 33, No. 5 ( 2019-10), p. 925-933
    Type of Medium: Online Resource
    ISSN: 2095-6037 , 2198-0934
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2782783-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 15, No. 9 ( 2023-05-05), p. 2431-
    Abstract: The accuracy and consistency of Earth observation (EO) instrument radiometric calibration is a fundamental prerequisite for achieving accurate results and delivering reliable predictions. Frequent calibration and validation (Cal/Val) activities are needed during the instrument’s lifetime, and this procedure is often extended to historical archives. Numerous satellites in orbit and proposed future missions have incorporated lunar observation into their vicarious calibration components over recent years, facilitated by the extreme long-term photometric stability of the Moon. Since the birth of the first lunar calibration reference model, lunar-dependent calibration techniques have developed rapidly, and the application and refinement of the lunar radiometric model have become a welcome research focus in the calibration community. Within the context of the development of lunar observation activities and calibration systems globally, we provide a comprehensive review of the activities and results spawned by treating the Moon as a reference for instrument response and categorize them against the understanding of lunar radiometric reference. In general, this appears to be a process of moving from data to instruments, then back into data, working towards a stated goal. Here we highlight lunar radiometric models developed by different institutions or agencies over the last two decades while reporting on the known limitations of these solutions, with unresolved challenges remaining and multiple lunar observation plans and concepts attempting to address them from various perspectives, presenting a temporal development. We also observe that the methods seeking uncertainty reduction at this stage are rather homogeneous, lacking the combination of approaches or results from lunar surface studies conducted by many spacecraft missions, and joint deep learning methods to extract information. The factors that influence the accuracy of the measurement irradiance may be regulated when practical models arrive. As a central element in lunar calibration, the development of an absolute radiometric datum helps to better understand the Earth system.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 12, No. 11 ( 2020-06-10), p. 1878-
    Abstract: A lunar observation campaign was conducted using a hyper-spectral imaging spectrometer in Lijiang, China from December 2015 to February 2016. The lunar hyper-spectral images in the visible to near-infrared region (VNIR) have been obtained in different lunar phases with absolute scale established by the National Institute of Metrology (NIM), China using the lamp–plate calibration system. At the same time, the aerosol optical depth (AOD) is measured regularly by a lidar and a lunar CE318U for atmospheric characterization to provide nightly atmosphere extinction correction of lunar observations. This paper addressed the complicated data processing procedure in detail from raw images of the spectrometer into the spectral lunar irradiance in different lunar phases. The result of measurement shows that the imaging spectrometer can provide lunar irradiance with uncertainties less than 3.30% except for absorption bands. Except for strong atmosphere absorption region, the mean spectral irradiance difference between the measured irradiance and the ROLO (Robotic Lunar Observatory) model is 8.6 ± 2% over the course of the lunar observation mission. The ROLO model performs more reliable to clarify absolute and relative accuracy of lunar irradiance than that of the MT2009 model in different Sun–Moon–Earth geometry. The spectral ratio analysis of lunar irradiance shows that band-to-band variability in the ROLO model is consistent within 2%, and the consistency of the models in the lunar phase and spectrum is well analyzed and evaluated from phase dependence and phase reddening analysis respectively.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2018
    In:  IEEE Transactions on Geoscience and Remote Sensing Vol. 56, No. 8 ( 2018-8), p. 4866-4875
    In: IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 56, No. 8 ( 2018-8), p. 4866-4875
    Type of Medium: Online Resource
    ISSN: 0196-2892 , 1558-0644
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018
    detail.hit.zdb_id: 2027520-1
    SSG: 16,13
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 17 ( 2020-08-20), p. 4690-
    In: Sensors, MDPI AG, Vol. 20, No. 17 ( 2020-08-20), p. 4690-
    Abstract: Limited by the on-orbital calibration capability, scaling the measured radiance in accuracy and stability is challenging for the Earth observation satellites in the reflective solar bands (RSBs). Although the lunar calibration is a well-developed technique in the RSBs, limited work has been done for Chinese Earth observation satellites. To improve the on-orbital calibration performance, the advanced MEdium Resolution Spectral Imager (MERSI II), which is the primary payload of the fourth satellite of the Fengyun 3 Series (FY-3D), expands the space view angle of the imager in order to capture better lunar images. In this study, we propose an absolute radiometric calibration method based on the FY-3D/MERSI lunar observation data. A lunar irradiance model named ROLO/GIRO has been used together with the necessary data procedures, including dark current count estimation, single pixel irradiance calculation, and full disk lunar irradiance calculation. The calibration coefficients obtained by the lunar calibration are compared with the pre-launch laboratory calibration. The results show that the deviations between the two calibration procedures are in a reasonable range in general. However, a relatively high non-linear response was found in the low energy incidence for some detectors, which leads to the large deviation in the corresponding bands. This study explored an ideal and independent method to validate MERSI on-orbit radiometric performance. The lunar calibration practiced for MERSI also gave a valuable example that can be recommended to the other Chinese Earth observation satellites.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...