GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genetics, Oxford University Press (OUP), Vol. 206, No. 3 ( 2017-07-01), p. 1237-1250
    Abstract: Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based “in vitro” linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of “subhaploid” fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6–14 kb), with up to 15-fold improvement of N50 (∼816 kb-3.7 Mb) and high scaffolding accuracy (98.1–98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Ecology & Evolution, Springer Science and Business Media LLC, Vol. 1, No. 5 ( 2017-04-03)
    Abstract: Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis , a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8 -dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
    Type of Medium: Online Resource
    ISSN: 2397-334X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2879715-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Scientific Reports Vol. 6, No. 1 ( 2016-01-12)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2016-01-12)
    Abstract: The recently developed 2b-restriction site-associated DNA (2b-RAD) sequencing method provides a cost-effective and flexible genotyping platform for aquaculture species lacking sufficient genomic resources. Here, we evaluated the performance of this method in the genomic selection (GS) of Yesso scallop ( Patinopecten yessoensis ) through simulation and real data analyses using six statistical models. Our simulation analysis revealed that the prediction accuracies obtained using the 2b-RAD markers were slightly lower than those obtained using all polymorphic loci in the genome. Furthermore, a small subset of markers obtained from a reduced tag representation (RTR) library presented comparable performance to that obtained using all markers, making RTR be an attractive approach for GS purpose. Six GS models exhibited variable performance in prediction accuracy depending on the scenarios (e.g., heritability, sample size, population structure), but Bayes-alphabet and BLUP-based models generally outperformed other models. Finally, we performed the evaluation using an empirical dataset composed of 349 Yesso scallops that were derived from five families. The prediction accuracy for this empirical dataset could reach 0.4 based on optimal GS models. In summary, the genotyping flexibility and cost-effectiveness make 2b-RAD be an ideal genotyping platform for genomic selection in aquaculture breeding programs.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...