GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ecology, Wiley, Vol. 104, No. 10 ( 2023-10)
    Abstract: Environmental pathogen reservoirs exist for many globally important diseases and can fuel epidemics, influence pathogen evolution, and increase the threat of host extinction. Species composition can be an important factor that shapes reservoir dynamics and ultimately determines the outcome of a disease outbreak. However, disease‐induced mortality can change species communities, indicating that species responsible for environmental reservoir maintenance may change over time. Here we examine the reservoir dynamics of Pseudogymnoascus destructans , the fungal pathogen that causes white‐nose syndrome in bats. We quantified changes in pathogen shedding, infection prevalence and intensity, host abundance, and the subsequent propagule pressure imposed by each species over time. We find that highly shedding species are important during pathogen invasion, but contribute less over time to environmental contamination as they also suffer the greatest declines. Less infected species remain more abundant, resulting in equivalent or higher propagule pressure. More broadly, we demonstrate that high infection intensity and subsequent mortality during disease progression can reduce the contributions of high‐shedding species to long‐term pathogen maintenance.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biology Letters, The Royal Society, Vol. 19, No. 3 ( 2023-03)
    Abstract: Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over 7 years on bat body mass, infection and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat loss depended on infection severity. Lastly, we found mixed support that bat mass increased in the population after pathogen arrival; high annual plasticity in individual bat masses may have reduced the potential for directional selection. Overall, our results suggest that some factors that contribute to host survival during pathogen invasion may diminish over time and are potentially replaced by other host adaptations.
    Type of Medium: Online Resource
    ISSN: 1744-957X
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 2103283-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Conservation Science and Practice Vol. 2, No. 11 ( 2020-11)
    In: Conservation Science and Practice, Wiley, Vol. 2, No. 11 ( 2020-11)
    Abstract: Population monitoring and research are essential for conserving wildlife, but these activities may directly impact the populations under study. These activities are often restricted to minimize disturbance, and impacts must be weighed against knowledge gained. However, few studies have quantified the effects of research or census‐related visitation frequency on populations, and low visitation rates have been hypothesized to have little effect. Hibernating bats have been hypothesized to be especially sensitive to visitation because they have limited energetic stores to survive winter, and disturbance may partly deplete these stores. We examined the effect of site visitation frequency on population growth rates of three species of hibernating bats, little brown bats ( Myotis lucifugus ), Indiana bats ( Myotis sodalis ) and tri‐colored bats ( Perimyotis subflavus ), both before and after detection of the disease white‐nose syndrome. We found no evidence that more frequent visits decreased population growth rates for any of these species. Estimated coefficients were either the opposite sign as hypothesized (population growth rates increased with visitation frequency) or were very small (difference in population growth rates 0.067% [SE 2.5%]–1.8% [SE 9.8%] ) relative to spatial and temporal variation (5.9–32%). In contrast, white‐nose syndrome impacts on population growth rates were easily detected and well‐characterized statistically (effect sizes 4.4–8.0; severe population declines occurred in the second and third years after pathogen detection) indicating that we had sufficient power to detect effects. These results indicate that visitation frequency (for M. sodalis: annual vs. semi‐annual counts; for M. lucifugus and P. subflavus: 1–3 three research visits per year) had undetectable impacts on bat population growth rates both with and without the additional stress of an emerging infectious disease. Knowledge gained from censuses and research may outweigh disturbance due to human visitation if it can be used to understand and conserve the species.
    Type of Medium: Online Resource
    ISSN: 2578-4854 , 2578-4854
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2947571-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-01-08)
    Abstract: Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host–pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportion of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-06-24)
    Abstract: Tools for reducing wildlife disease impacts are needed to conserve biodiversity. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans , has caused widespread declines in North American bat populations and threatens several species with extinction. Few tools exist for managers to reduce WNS impacts. We tested the efficacy of a probiotic bacterium, Pseudomonas fluorescens , to reduce impacts of WNS in two simultaneous experiments with caged and free-flying Myotis lucifugus bats at a mine in Wisconsin, USA. In the cage experiment there was no difference in survival between control and P . fluorescens -treated bats. However, body mass, not infection intensity, predicted mortality, suggesting that within-cage disturbance influenced the cage experiment. In the free-flying experiment, where bats were able to avoid conspecific disturbance, infection intensity predicted the date of emergence from the mine. In this experiment treatment with P . fluorescens increased apparent overwinter survival five-fold compared to the control group (from 8.4% to 46.2%) by delaying emergence of bats from the site by approximately 32 days. These results suggest that treatment of bats with P . fluorescens may substantially reduce WNS mortality, and, if used in combination with other interventions, could stop population declines.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Animal Ecology, Wiley, Vol. 90, No. 5 ( 2021-05), p. 1134-1141
    Abstract: Emerging infectious diseases can have devastating effects on host communities, causing population collapse and species extinctions. The timing of novel pathogen arrival into naïve species communities can have consequential effects that shape the trajectory of epidemics through populations. Pathogen introductions are often presumed to occur when hosts are highly mobile. However, spread patterns can be influenced by a multitude of other factors including host body condition and infectiousness. White‐nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogen Pseudogymnoascus destructans . Within‐site transmission of P. destructans primarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown. We combined data on host population dynamics and pathogen transmission from 22 bat communities to investigate the timing of pathogen arrival and the consequences of varying pathogen arrival times on disease impacts. We found that midwinter arrival of the fungus predominated spread patterns, suggesting that bats were most likely to spread P . destructans when they are highly infectious, but have reduced mobility. In communities where P. destructans was detected in early winter, one species suffered higher fungal burdens and experienced more severe declines than at sites where the pathogen was detected later in the winter, suggesting that the timing of pathogen introduction had consequential effects for some bat communities. We also found evidence of source–sink population dynamics over winter, suggesting some movement among sites occurs during hibernation, even though bats at northern latitudes were thought to be fairly immobile during this period. Winter emergence behaviour symptomatic of white‐nose syndrome may further exacerbate these winter bat movements to uninfected areas. Our results suggest that low infectiousness during host migration may have reduced the rate of expansion of this deadly pathogen, and that elevated infectiousness during winter plays a key role in seasonal transmission. Furthermore, our results highlight the importance of both accurate estimation of the timing of pathogen spread and the consequences of varying arrival times to prevent and mitigate the effects of infectious diseases.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Ecology, Wiley, Vol. 60, No. 5 ( 2023-05), p. 923-933
    Abstract: Emerging infectious diseases have caused population declines and biodiversity loss. The ability of pathogens to survive in the environment, independent of their host, can exacerbate disease impacts and increase the likelihood of species extinction. Control of pathogens with environmental stages remains a significant challenge for conservation and effective management strategies are urgently needed. We examined the effectiveness of managing environmental exposure to reduce the impacts of an emerging infectious disease of bats, white‐nose syndrome (WNS). We used a chemical disinfectant, chlorine dioxide (ClO 2 ), to experimentally reduce Pseudogymnoascus destructans , the fungal pathogen causing WNS, in the environment. We combined laboratory experiments with 3 years of field trials at four abandoned mines to determine whether ClO 2 could effectively remove P. destructans from the environment, reduce host infection and limit population impacts. ClO 2 was effective at killing P. destructans in vitro across multiple concentrations. In field settings, higher concentrations of ClO 2 treatment were needed to sufficiently reduce viable P. destructans conidia in the environment. The reduction in the environmental reservoir at treatment sites resulted in lower fungal loads on bats compared to untreated control populations. Survival following treatment was also higher in little brown bats ( Myotis lucifugus ), and trended higher for tricolored bats ( Perimyotis subflavus ). Synthesis and applications . Our results highlight that targeted management of sources for environmental transmission can be an effective control strategy for wildlife disease. We found that successfully reducing pathogen in the environment decreased disease severity and increased survival, but required higher treatment exposure than was effective in laboratory experiments, and the effects varied among species. More broadly, our findings have implications for other emerging wildlife diseases with free‐living pathogen stages by highlighting how the degree of environmental contamination can have cascading impacts on hosts, presenting an opportunity for intervention.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 566, No. 7742 ( 2019-2), p. E3-E3
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Global Ecology and Biogeography, Wiley, Vol. 24, No. 7 ( 2015-07), p. 741-749
    Abstract: We investigated the effects of disease on the local abundances and distributions of species at continental scales by examining the impacts of white‐nose syndrome, an infectious disease of hibernating bats, which has recently emerged in N orth A merica. Location N orth A merica and E urope. Methods We used four decades of population counts from 1108 populations to compare the local abundances of bats in N orth A merica before and after the emergence of white‐nose syndrome to the situation in E urope, where the disease is endemic. We also examined the probability of local extinction for six species of hibernating bats in eastern N orth A merica and assessed the influence of winter colony size prior to the emergence of white‐nose syndrome on the risk of local extinction. Results White‐nose syndrome has caused a 10‐fold decrease in the abundance of bats at hibernacula in N orth A merica, eliminating large differences in species abundance patterns that existed between E urope and N orth A merica prior to disease emergence. White‐nose syndrome has also caused extensive local extinctions (up to 69% of sites in a single species). For five out of six species, the risk of local extinction was lower in larger winter populations, as expected from theory, but for the most affected species, the northern long‐eared bat ( M yotis septentrionalis ), extinction risk was constant across winter colony sizes, demonstrating that disease can sometimes eliminate numerical rarity as the dominant driver of extinction risk by driving both small and large populations extinct. Main conclusions Species interactions, including disease, play an underappreciated role in macroecological patterns and influence broad patterns of species abundance, occurrence and extinction.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 290, No. 1995 ( 2023-03-29)
    Abstract: Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...