GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: GigaScience, Oxford University Press (OUP), Vol. 10, No. 12 ( 2021-12-09)
    Abstract: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non–poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. Results We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA–minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG–positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. Conclusion By using the full potential of non–poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.
    Type of Medium: Online Resource
    ISSN: 2047-217X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2708999-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Neuropathologica, Springer Science and Business Media LLC, Vol. 141, No. 6 ( 2021-06), p. 945-957
    Abstract: Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1 R132H mutations. Patients harbouring IDH1 R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations (“non-R132H IDH1/2 mutations”). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1 R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p  = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes ( p   〈  0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1 R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.
    Type of Medium: Online Resource
    ISSN: 0001-6322 , 1432-0533
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1458410-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 12 ( 2022-06-13), p. 2527-2535
    Abstract: In a post hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2 wildtype (wt) anaplastic astrocytomas with molecular features of glioblastoma [redesignated as glioblastoma, isocitrate dehydrogenase–wildtype (IDH-wt) in the 2021 World Health Organization (WHO) classification of central nervous system tumors]. Patients and Methods: From the randomized phase III CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. Results: Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. A total of 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wt. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival [HR, 1.19; 95% confidence interval (CI), 0.82–1.71] or progression-free survival (HR, 0.87; 95% CI, 0.61–1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. Conclusions: In this cohort of patients with glioblastoma, IDH-wt temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 23, No. 9 ( 2021-09-01), p. 1547-1559
    Abstract: Survival in patients with IDH1/2-mutant (mt) anaplastic astrocytomas is highly variable. We have used the prospective phase 3 CATNON trial to identify molecular factors related to outcome in IDH1/2mt anaplastic astrocytoma patients. Methods The CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic glioma to 59.4 Gy radiotherapy +/− concurrent and/or adjuvant temozolomide. The presence of necrosis and/or microvascular proliferation was scored at central pathology review. Infinium MethylationEPIC BeadChip arrays were used for genome-wide DNA methylation analysis and the determination of copy number variations (CNV). Two DNA methylation-based tumor classifiers were used for risk stratification. Next-generation sequencing (NGS) was performed using 1 of the 2 glioma-tailored NGS panels. The primary endpoint was overall survival measured from the date of randomization. Results Full analysis (genome-wide DNA methylation and NGS) was successfully performed on 654 tumors. Of these, 432 tumors were IDH1/2mt anaplastic astrocytomas. Both epigenetic classifiers identified poor prognosis patients that partially overlapped. A predictive prognostic Cox proportional hazard model identified that independent prognostic factors for IDH1/2mt anaplastic astrocytoma patients included; age, mini-mental state examination score, treatment with concurrent and/or adjuvant temozolomide, the epigenetic classifiers, PDGFRA amplification, CDKN2A/B homozygous deletion, PI3K mutations, and total CNV load. Independent recursive partitioning analysis highlights the importance of these factors for patient prognostication. Conclusion Both clinical and molecular factors identify IDH1/2mt anaplastic astrocytoma patients with worse outcome. These results will further refine the current WHO criteria for glioma classification.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. 3 ( 2022-03-12), p. 429-441
    Abstract: EGFR is among the genes most frequently altered in glioblastoma, with exons 2-7 deletions (EGFRvIII) being among its most common genomic mutations. There are conflicting reports about its prognostic role and it remains unclear whether and how it differs in signaling compared with wildtype EGFR. Methods To better understand the oncogenic role of EGFRvIII, we leveraged 4 large datasets into 1 large glioblastoma transcriptome dataset (n = 741) alongside 81 whole-genome samples from 2 datasets. Results The EGFRvIII/EGFR expression ratios differ strongly between tumors and range from 1% to 95%. Interestingly, the slope of relative EGFRvIII expression is near-linear, which argues against a more positive selection pressure than EGFR wildtype. An absence of selection pressure is also suggested by the similar survival between EGFRvIII-positive and -negative glioblastoma patients. EGFRvIII levels are inversely correlated with pan-EGFR (all wildtype and mutant variants) expression, which indicates that EGFRvIII has a higher potency in downstream pathway activation. EGFRvIII-positive glioblastomas have a lower CDK4 or MDM2 amplification incidence than EGFRvIII-negative (P = .007), which may point toward crosstalk between these pathways. EGFRvIII-expressing tumors have an upregulation of “classical” subtype genes compared to those with EGFR-amplification only (P = 3.873e−6). Genomic breakpoints of the EGFRvIII deletions have a preference toward the 3′-end of the large intron-1. These preferred breakpoints preserve a cryptic exon resulting in a novel EGFRvIII variant and preserve an intronic enhancer. Conclusions These data provide deeper insights into the complex EGFRvIII biology and provide new insights for targeting EGFRvIII mutated tumors.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6140-6140
    Abstract: Background: Glioblastoma is the most prevalent and severe type of malignant brain tumor in adults. Although the genetic make-up initiating glioblastoma is increasingly better understood, a better understanding in the mechanisms that drive its evolution, heterogeneity and therapy resistance may reveal new directions for therapy development. To get better insights into glioblastoma evolution, we analyzed and de-convoluted transcriptomes of primary and recurrent glioblastoma resections. Material and Methods: Matching primary and secondary resections from n=185 glioblastoma patients were collected as part of EORTC Study 1542. The study was extended with tumor pairs from n=51 patients from the international GLASS study. The datasets were subjected to differential and deconvolution analysis using in-house algorithms. Results: When mapping the tumor samples into a reduced Glioblastoma Intrinsic Transcriptional Subtype space, we visualized subtype traversal, indicating that the CL subtype most often switches. As we found no more transitions from MES to other subtypes than to be expected by chance, we concluded that MES is an end-state. On average, tumor cell percentages decreased from ~67% to ~50% mostly due to an increase in TAM/microglia. Differential expression analysis was performed with correction for tumor cell percentages. While expression of most known oncogenes did not change considerably over time, marker genes of TAM/microglia, neurons and oligodendrocytes were up-regulated whereas endothelial cell markers were down-regulated over time. Furthermore, a cluster of ~30 extracellular matrix-associated genes increase significantly over time. A signature representing the gene-set was significantly associated with poor survival; high signatures were in particular associated to survival in secondary resections (P = 6.613e-06, Kaplan-Meier estimator). This suggests that the increase of extracellular matrix expression fulfils an important role in glioblastoma evolution. Conclusion: Using a large cohort, we interrogated changes in the glioblastoma transcriptome over time and found that in particular the composition of the tumor and its environment changes. The tumor cell percentage drops, suggesting more invasion or recruitment of non-malignant cells or a combination of both. This change is independent of an increase in the prognostic increase in extracellular matrix expression. Citation Format: Youri Hoogstrate, Kaspar Draaisma, Santoesha A. Ghisai, Iris de Heer, Levi van Hijfte, Wouter Coppieters, Melissa Kerkhof, Astrid Weyerbrock, Marc Sanson, Ann Hoeben, Slávka Lukacova, Giuseppe Lombardi, Sieger Leenstra, Monique Hanse, Ruth Fleischeuer, Colin Watts, Joseph McAbee, Nicos Angelopoulos, Thierry Gorlia, Vassilis Golfinopoulos, Johan M. Kros, Vincent Bours, Martin J. van den Bent, Pierre A. Robe, Pim J. French. Transcriptional evolution of glioblastoma reveals changes in bulk composition, mesenchymal sub-type as end-state, and a prognostic association with increased extracellular matrix gene expression [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6140.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Cell, Elsevier BV, Vol. 41, No. 4 ( 2023-04), p. 678-692.e7
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Neuro-Oncology Vol. 23, No. 5 ( 2021-05-05), p. 707-708
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 23, No. 5 ( 2021-05-05), p. 707-708
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 2, No. 1 ( 2020-01-01)
    Abstract: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment. Methods Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit. Results We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harboring EGFR single-nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitizing SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signaling in glioblastomas. Ligand hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody–drug conjugate. We also identified tumors harboring mutations sensitive to “classical” EGFR tyrosine-kinase inhibitors, providing a potential alternative treatment strategy. Conclusions These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR signaling in these tumors.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 3, No. 1 ( 2021-01-01)
    Abstract: Mutations of the isocitrate dehydrogenase (IDH) gene occur in over 80% of low-grade gliomas and secondary glioblastomas. Despite considerable efforts, endogenous in vitro IDH-mutated glioma models remain scarce. Availability of these models is key for the development of new therapeutic interventions. Methods Cell cultures were established from fresh tumor material and expanded in serum-free culture media. D-2-Hydroxyglutarate levels were determined by mass spectrometry. Genomic and transcriptomic profiling were carried out on the Illumina Novaseq platform, methylation profiling was performed with the Infinium MethylationEpic BeadChip array. Mitochondrial respiration was measured with the Seahorse XF24 Analyzer. Drug screens were performed with an NIH FDA-approved anti-cancer drug set and two IDH-mutant specific inhibitors. Results A set of twelve patient-derived IDHmt cell cultures was established. We confirmed high concordance in driver mutations, copy numbers and methylation profiles between the tumors and derived cultures. Homozygous deletion of CDKN2A/B was observed in all cultures. IDH-mutant cultures had lower mitochondrial reserve capacity. IDH-mutant specific inhibitors did not affect cell viability or global gene expression. Screening of 107 FDA-approved anti-cancer drugs identified nine compounds with potent activity against IDHmt gliomas, including three compounds with favorable pharmacokinetic characteristics for CNS penetration: teniposide, omacetaxine mepesuccinate, and marizomib. Conclusions Our twelve IDH-mutant cell cultures show high similarity to the parental tissues and offer a unique tool to study the biology and drug sensitivities of high-grade IDHmt gliomas in vitro. Our drug screening studies reveal lack of sensitivity to IDHmt inhibitors, but sensitivity to a set of nine available anti-cancer agents.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...