GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3832-3832
    Abstract: Therapeutic reactivity of CD20-specific monoclonal antibodies (mAb) or CD19-specific chimeric antigen receptor (CAR)-transduced T cells is exerted by targeting extracellular antigens. However, loss of CD20 and CD19 expression or absence of these molecules on other malignancies such as multiple myeloma restricts their application. Here, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for immunotherapy. Bob1 is highly expressed in CD19+ B cells, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and multiple myeloma (MM) and is absent in the non-B lineages including CD34+ hematopoietic progenitor cells (HPCs), T cells, fibroblasts, keratinocytes and gastrointestinal tract. Bob1 is localized intracellularly but HLA-presented Bob1-derived peptides are accessible on the cell surface to T cell receptors (TCRs) and can thus be recognized by T cells. From the HLA-presented ligandome (Mol Cell Proteomics, 2013;12:1829) we identified naturally processed Bob1-derived peptides displayed in HLA-A*0201 (HLA-A2) and in HLA-B*0702 (HLA-B7). Since auto-reactivity towards self-antigens such as Bob1 is prevented by depleting high-avidity T cells recognizing self-antigens in self-HLA, we exploited the immunogenicity of these peptides presented in allogeneic HLA. From a total of 3 x 109 peripheral blood mononuclear cells from 6 different HLA-A2/B7-negative healthy donors, we isolated and clonally expanded more than 1000 CD8+ T cells binding to peptide-MHC-tetramers composed of the Bob1-derived peptides bound to HLA-A2 or HLA-B7. The T cell clones were tested for stringent peptide-specificity by stimulation with Bob1-negative K562 cells expressing either HLA-A2 or B7 unloaded or pulsed with Bob1-derived peptides. This resulted in the selection of 15 T cell clones highly specific for Bob1. To identify the T cell clones of highest avidity, T cell clones were compared for peptide-sensitivity by testing the recognition of stimulator cells loaded with titrated amounts of Bob1-derived peptides and of Bob1-expressing HLA-A2/B7-positive EBV-transformed B cells. T cell clone 4G11 was selected because of high sensitivity and specificity for Bob1-derived peptide Bob144 presented in HLA-B7 and T cell clone 3C10 specifically recognized peptide Bob1245 bound to HLA-A2. Bob1-dependent recognition was demonstrated by transduction of Bob1 into cell lines that otherwise lack Bob1 expression. To investigate whether harmful toxicities could be caused by these T cell clones, we tested their reactivity against a wide panel of Bob1-negative stimulator cells demonstrating absence of recognition of HLA-B7-positive CD34+ HPCs, T cells, monocytes, immature and mature dendritic cells, and fibroblasts even under simulated inflamed conditions. Stringent HLA-B7-restricted recognition was observed for clone 4G11 when tested against a stimulator panel expressing a wide range of common and rare HLA class I and II molecules. These data illustrate a safe reactivity profile with little chance of off-target toxicity. To test their clinical applicability, clone 4G11 and 3C10 were tested for recognition of various primary B cell malignancies. Clone 4G11 efficiently recognized HLA-B7-positive primary ALL, CLL and mantle cell lymphoma while clone 3C10 recognized HLA-A2-positive primary B cell malignancies albeit to a lesser degree. Furthermore, reproducible strong recognition of purified primary HLA-B7-positive multiple myeloma could be demonstrated for clone 4G11. Therefore, T cell clone 4G11’s TCR may be used for immunotherapy by administering TCR-transduced T cells to multiple myeloma patients. To test whether introduction of 4G11’s TCR confers Bob1-reactivity onto recipient cells, the TCR was cloned into a retroviral vector. Highly specific reactivity against HLA-B7-positive Bob1-expressing target cells could be installed to TCR-transduced recipient T cells. In summary, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for TCR-based immunotherapies of B cell malignancies and multiple myeloma. Bob1-specific T cell clone 4G11 efficiently recognized primary B cell leukemia and multiple myeloma. TCR gene transfer approaches using Bob1-specific TCRs can bring novel treatment modalities for patients with B cell malignancies or multiple myeloma. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3002-3002
    Abstract: Therapeutic reactivity of CD20-specific monoclonal antibodies (mAb) or CD19-specific chimeric antigen receptor (CAR)-transduced T cells is exerted by targeting extracellular antigens. In contrast to mAbs and CARs, T cell receptors (TCRs) recognize antigen-derived peptides that are bound to human leukocyte antigen (HLA) molecules on the cell surface. Since HLA molecules constantly sample the entire endogenous proteome of a cell, extracellular and intracellular antigens are presented and can thus be recognized by a TCR. Here, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for immunotherapy. Bob1 is highly expressed in CD19+ B cells, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and multiple myeloma (MM) and is absent in the non-B lineages including CD34+ hematopoietic progenitor cells (HPCs), T cells, fibroblasts, keratinocytes and gastrointestinal tract. Bob1 is localized intracellularly but HLA-presented Bob1-derived peptides are accessible on the cell surface to TCRs and can thus be recognized by T cells. From the HLA-presented ligandome (Mol Cell Proteomics, 2013;12:1829) we identified naturally processed Bob1-derived peptides displayed in HLA-A*0201 (HLA-A2) and in HLA-B*0702 (HLA-B7). Since auto-reactivity towards self-antigens such as Bob1 is prevented by depleting high-avidity T cells recognizing self-antigens in self-HLA, we exploited the immunogenicity of these peptides presented in allogeneic HLA. From a HLA-A2/B7-negative healthy individual we isolated T cell clone 4G11 demonstrating high sensitivity and specificity for Bob1-derived peptide Bob144 presented in HLA-B7. Bob1-dependent recognition was demonstrated by transduction of Bob1 into cell lines that otherwise lack Bob1 expression. No harmful toxicities of clone 4G11 were observed against a wide panel of Bob1-negative stimulator cells including HLA-B7-positive CD34+ HPCs, T cells, monocytes, immature and mature dendritic cells, and fibroblasts even under simulated inflamed conditions. Furthermore, stringent HLA-B7-restricted recognition was observed for clone 4G11 when tested against a stimulator panel expressing a wide range of common and rare HLA class I and II molecules. Clone 4G11 demonstrated clinical applicability by efficiently recognizing HLA-B7+ primary ALL, CLL and MCL. Furthermore, reproducible strong recognition of purified primary HLA-B7+ MM could be demonstrated. Therefore, the TCR of clone 4G11 may be used for immunotherapy by administering TCR-transduced T cells to patients suffering from B cell malignancies including multiple myeloma. Retroviral gene transfer of TCR 4G11 led to efficient cell surface expression demonstrated by binding of TCR-transduced CD8+ T cells to pMHC-tetramer composed of peptide Bob144 bound to HLA-B7. TCR-modified CD8+ T cells strongly recognized Bob1-expressing HLA-B7+ multiple myeloma cell lines U266 and UM9, and ALL cell lines. TCR-modified T cells efficiently lysed HLA-B7+ primary ALL, CLL and MCL at very low effector-to-target ratios. In addition, highly purified primary multiple myeloma samples were also readily lysed. Furthermore, TCR-transduced T cells strongly proliferated in an antigen-specific manner when stimulated with primary malignant cell samples including ALL, CLL, and MCL or MM cell lines. As expected, TCR-transduced T cells also lysed autologous primary and CD40L-stimulated B cells since these targets cells also express Bob1. In contrast, no lysis of Bob1-negative autologous primary and activated T cells, or monocytes was observed when co-cultured with TCR-transduced T cells. In summary, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for TCR-based immunotherapies of B cell malignancies. Bob1-specific T cell clone 4G11 efficiently recognized primary B cell leukemia and multiple myeloma. Gene transfer of TCR of clone 4G11 installed Bob1-reactivity and specificity onto recipient T cells shown here by cytolytic capacity and proliferation upon antigen encounter. TCR gene transfer approaches using this Bob1-specific TCR can bring novel treatment modalities and possibly curative therapy to patients with B cell malignancies including multiple myeloma. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 190, No. 8 ( 2013-04-15), p. 3869-3877
    Abstract: T cell recognition of minor histocompatibility Ags (MiHA) plays an important role in the graft-versus-tumor effect of allogeneic stem cell transplantation. Selective infusion of T cells reactive for hematopoiesis-restricted MiHA presented in the context of HLA class I or II molecules may help to separate the graft-versus-tumor effects from graft-versus-host disease effects after allogeneic stem cell transplantation. Over the years, increasing numbers of MiHA have been identified by forward immunology approaches, and the relevance of these MiHA has been illustrated by correlation with clinical outcome. As the tissue distribution of MiHA affects the clinical outcome of T cell responses against these Ags, it would be beneficial to identify additional predefined MiHA that are exclusively expressed on hematopoietic cells. Therefore, several reverse immunology approaches have been explored for the prediction of MiHA. Thus far, these approaches frequently resulted in the identification of T cells directed against epitopes that are not naturally processed and presented. In this study we established a method for the identification of biologically relevant MiHA, implementing mass spectrometry–based HLA-peptidomics into a reverse immunology approach. For this purpose, HLA class I binding peptides were eluted from transformed B cells, analyzed by mass spectrometry, and matched with a database dedicated to identifying polymorphic peptides. This process resulted in a set of 40 MiHA candidates that were evaluated in multiple selection steps. The identification of LB-NISCH-1A demonstrated the technical feasibility of our approach. On the basis of these results, we present an approach that can be of value for the efficient identification of MiHA or other T cell epitopes.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2013
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 125, No. 6 ( 2015-02-05), p. 949-958
    Abstract: B-cell malignancies were efficiently recognized by T cells expressing high-affinity alloHLA-restricted TCRs specific for CD79b. Aberrant expression of CD79b in non–B cells caused unwanted reactivity, rendering CD79b unsuitable for TCR-based immunotherapies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 9 ( 2015-05-01), p. 2177-2186
    Abstract: Purpose: T-cell recognition of minor histocompatibility antigens (MiHA) not only plays an important role in the beneficial graft-versus-leukemia (GVL) effect of allogeneic stem cell transplantation (allo-SCT) but also mediates serious GVH complications associated with allo-SCT. Using a reverse immunology approach, we aim to develop a method enabling the identification of T-cell responses directed against predefined antigens, with the goal to select those MiHAs that can be used clinically in combination with allo-SCT. Experimental Design: In this study, we used a recently developed MiHA selection algorithm to select candidate MiHAs within the HLA-presented ligandome of transformed B cells. From the HLA-presented ligandome that predominantly consisted of monomorphic peptides, 25 polymorphic peptides with a clinically relevant allele frequency were selected. By high-throughput screening, the availability of high-avidity T cells specific for these MiHA candidates in different healthy donors was analyzed. Results: With the use of MHC multimer enrichment, analyses of expanded T cells by combinatorial coding MHC multimer flow cytometry, and subsequent single-cell cloning, positive T-cell clones directed to two new MiHA: LB-CLYBL-1Y and LB-TEP1-1S could be demonstrated, indicating the immunogenicity of these two MiHAs. Conclusions: The biologic relevance of MiHA LB-CLYBL-1Y was demonstrated by the detection of LB-CLYBL-1Y–specific T cells in a patient suffering from acute myeloid leukemia (AML) that experienced an anti-leukemic response after treatment with allo-SCT. Clin Cancer Res; 21(9); 2177–86. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 129, No. 10 ( 2017-03-09), p. 1284-1295
    Abstract: Isolation and characterization of a high-affinity TCR targeting the intracellular B cell–specific transcription factor BOB1. T cells expressing a BOB1-specific TCR lysed and eradicated primary multiple myeloma and other B-cell malignancies in vitro and in vivo.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 44 ( 2016-11-01), p. 71536-71547
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3837-3837
    Abstract: Therapeutic monoclonal antibodies (mAb) such as Rituximab and Ofatumumab have demonstrated the clinical efficacy of targeting the B-cell restricted antigen CD20 for the treatment of B-cell lymphomas and leukemia. Although CD20 is also expressed on healthy B-cell cells which are depleted in the course of therapy, long-term B-cell aplasia is well manageable. However, non-responsive or refractory disease to CD20-targeted mAb treatment has been reported with various mechanisms of resistance: downregulation of CD20 expression, internalization of CD20:mAb complex, inhibition of complement-dependent cytotoxicity and absence of an effector cell repertoire in patients treated with chemotherapy prior to mAb infusion. Therefore, additional therapeutic strategies are required. T-cell receptor (TCR) gene transfer is an attractive strategy to equip T-cells with TCRs of defined antigen-specificity. Due to their high sensitivity for cognate antigen presented in HLA, TCRs can induce T-cell activation even when antigen expression is very low. However, the broad application of TCR-based adoptive immunotherapy directed against self-antigens such as CD20 is hampered by lack of an effective immune response against self-antigens. T-cells carrying high-affinity TCRs reactive to such self-antigens are deleted by negative selection during thymic development to prevent auto-reactivity. An attractive strategy to target self-antigens is to exploiting the immunogenicity of such antigens presented in the context of allogeneic HLA (alloHLA). Here, we used the CD20-derived peptide SLFLGILSV (CD20SLF) binding in HLA-A2 to isolate CD20-reactive T-cells carrying high-affinity TCRs. From peripheral blood mononuclear cells of HLA-A*0201 (HLA-A2)-negative healthy individuals CD8+ T-cells binding to peptide-HLA tetramers composed of CD20SLF bound to HLA-A2 were isolated and clonally expanded. Two high-avidity T-cell clones were identified specific for HLA-A2-bound CD20SLF. CD20-dependent recognition was demonstrated for both clones by transducing the CD20 gene in HLA-A2-positive cell lines which otherwise lack CD20 expression. Both CD20-specific T-cell clones efficiently recognized CD20-expressing HLA-A2-positive primary B-cell malignancies including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). In addition, the CD20-specific T-cell clones were able to more efficiently recognize ALL cell-lines than CD20-specific mAbs. We demonstrated that on target cells with only very low CD20 surface expression, the CD20-specific T-cell clones could still efficiently recognize endogenously processed CD20-derived peptide in the context of HLA-A2. Furthermore, no recognition of HLA-A2-positive but CD20-negative cell subsets including CD34+hematopoietic progenitor cells, T-cells, immature and mature dendritic cells could be demonstrated. Additionally, recognition of HLA-A2-positive non-hematopoietic cells such as fibroblasts even under simulated inflamed conditions was absent. Transduction of the identified TCRs resulted in efficient expression of the introduced CD20-specific TCRs and conferred CD20-specificity onto recipient cells. In summary, we exploited the immunogenicity of alloHLA to raise high-avidity T-cells against self-antigens such as CD20. The identified CD20-specific T-cell clones efficiently recognized CD20-expressing primary ALL, CLL and MCL. These T-cells clones more efficiently recognized B-cell malignancies than CD20-targeted mAbs while no recognition of CD20-negative hematopoietic and non-hematopoietic cells was observed. Transduction of these CD20-specific TCRs conferred CD20-specificity onto recipient cells. These CD20-specific TCRs can be useful to treat patients with CD20low B-cell malignancies by administering TCR-engineered T cells with potent effector function. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 4038-4038
    Abstract: Abstract 4038 T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, MiHA recognition is also associated with graft-versus-host disease (GVHD). It is assumed that the selective infusion of T-cells reactive with hematopoiesis-restricted MiHA may help to separate the GVT and GVHD effects of allo-SCT. However, the number of attractive MiHA identified to date remains limited. In this study we aimed to determine whether it is feasible to identify MiHA using HLA-peptidomics in a reverse-immunology approach, based on bona fide eluted MiHA epitopes. Successful development of such a technology could allow the rapid identification of new MiHA, required to make antigen-selective adoptive T-cell therapy a realistic option. In addition, when compared to classical forward approaches, this strategy may provide tools to efficiently identify favorable GVT-involved MiHA, rather than random identifying targets of activated T-cells isolated during a GVT-response. To identify biological relevant MiHA candidates, HLA class I peptides were isolated from lysed EBV-transformed B-cells (EBV-LCL), analyzed by mass spectrometry (MS) and matched with a human protein database (IPI). This effort resulted in a set of fifteen thousand peptides, encoded in the normal reading frame with high probability MS scores. To identify potential MiHA candidates, the total set was matched with our newly developed public available Human Short Peptide Variation Database (http://srs.bioinformatics.nl/hspv), dedicated to polymorphic peptides. The quality of this peptide set was demonstrated by a detection efficiency of fifty percent of known MiHA including various length variants and eluted MiHA counterparts. Subsequently the combined use of gene expression databases, validated single nucleotide polymorphism (SNP) arrays and HLA-peptide binding assays resulted in a further selection of 27 high potential HLA-A*0201 and B*0701 MiHA candidates. This set was used for the generation of pMHC tetramers by UV-mediated exchange technology. Next, pMHC tetramer positive specific T-cell lines were generated from eighteen healthy SNP-typed PBMC donors following MACS isolation. To decrease the incidence of isolating low affinity T-cells, due to self-tolerance induction, pMHC tetramer isolations were only performed using donors homozygous negative for the specific SNP. After repeated pMHC tetramer pull down, in vitro expanded cell samples were analyzed on a multi-color FACS LSRII flow cytometer and clonally expanded following FACS cell sorting. Using this approach we were able to detect 16 unique pMHC tetramer positive T-cell populations corresponding with 70% of eluted MiHA candidates. Most of these pMHC tetramer positive T-cell populations were detected in multiple individuals, and appeared to be oligoclonal. Although most T-cell clones produced IFN-γ when co-cultured with peptide-pulsed target cells, there appeared to be a wide variety of peptide affinity among the pMHC tetramer positive T-cell clones. High throughput screening of all clones for MiHA specific recognition patterns of SNP-typed EBV-LCL panels revealed a clear correlation between the peptide-affinity of the T-cell clone and its capacity to recognize endogenously processed and presented peptide. Collectively these efforts resulted in the validation of two previously described MiHA and the identification of three new biological relevant MiHA. In summary, this study resulted in the establishment of an algorithm for the high-throughput identification of MiHA based on the combined use of HLA-peptidomics and reverse-immunology by pMHC tetramers. Our data indicate that the technology developed within this project can be of great value to the efficient identification of novel MiHA with potential clinical value especially when epitope selection criteria are supplemented with gene expression data, allowing pre-selection for those MiHA candidates with a hematopoiesis restricted gene expression patterns that may direct reactivity towards GVT. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 47 ( 2016-11-22), p. 77021-77037
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...