GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Cellular Physiology, Wiley, ( 2013-06), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0021-9541
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 2 ( 2015-01-20), p. 732-745
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Metabolomics, Springer Science and Business Media LLC, Vol. 11, No. 5 ( 2015-10), p. 1287-1301
    Type of Medium: Online Resource
    ISSN: 1573-3882 , 1573-3890
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2182289-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 9 ( 2017-05-01), p. 2500-2511
    Abstract: The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERβ expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERβ expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERβ. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500–11. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 8_Supplement ( 2013-04-15), p. SY08-03-SY08-03
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. SY08-03-SY08-03
    Abstract: It is controversial whether dietary fiber protects against colorectal cancer because of conflicting results from human epidemiologic studies. These studies have been complicated by the participants' genetic heterogeneity and differences in the composition of microbiota within their gastrointestinal tracts. To eliminate these confounding variables, we utilized a gnotobiotic mouse model of colorectal cancer. Our experiments were designed to investigate the function of butyrate because it is a short-chain fatty acid produced by bacterial fermentation of fiber in the colon at high (mM) levels and has potent energetic and epigenetic properties in host colonocytes. Here, we report that fiber did, in fact, have a chemoprotective effect but in a microbiota- and butyrate-dependent manner. The incidence, number, size, and histopathologic progression of AOM/DSS-induced colorectal tumors were significantly diminished when BALB/c mice were provided a high-fiber diet only if they were colonized with defined microbiota that included a butyrate-producing bacteria. This chemoprotective effect was attenuated when mice were colonized with the same microbiota except that the wild-type butyrate producer was replaced by a mutant strain with a 0.8-kb deletion in the butyryl-CoA synthesis operon. To confirm that butyrate was a causal factor, the chemoprotective effect was also observed in mice without any butyrate-producing bacteria if their diet was fortified with a butyrate derivative. Our data support a general mechanism that includes microbial fermentation of fiber rather than fiber exclusively speeding colonic transit to minimize the exposure of colonocytes to ingested carcinogens. Our data also support a molecular mechanism that is metaboloepigenetic. Normal coloncytes utilize butyrate as their preferred energy source, whereas cancerous colonocytes rely on glucose because of the Warburg effect. Due to this metabolic difference, butyrate accumulated in tumors (as measured by LC-MS/MS) and functioned as an HDAC inhibitor to increase global histone acetylation levels and apoptosis. To support the applicability of this model to human cancer, we demonstrate that butyrate also accumulates at higher levels in human colorectal tumors than in normal colonic tissue, and this is associated with higher levels of histone acetylation in tumors. These results link diet and microbiota to a common metabolite that influences epigenetics and cancer predisposition. To investigate the metaboloepigenetic mechanism in more detail, we evaluated the effect of butyrate in colorectal cancer cell lines in the presence of the Warburg effect and when it was prevented from occurring by growing the tumor cells in low glucose or depleting lactate dehydrogenase levels (siLDHA). Low doses of butyrate (0.5-1 mM) inhibited cell proliferation in the presence of the Warburg effect by acting as an epigenetic factor (by inducing histone acetylation) but stimulated proliferation in the absence of the Warburg effect by acting as an energy source. Low doses of butyrate also stimulated the proliferation of non-cancerous colonocytes, which do not undergo the Warburg effect without any experimental manipulation. Higher doses of butyrate (2-5 mM), which exceed the metabolic capacity of the cell to oxidize butyrate (but are still physiologically relevant), induced histone acetylation and apoptosis regardless of the Warburg effect. At the lower doses, where butyrate was metabolized, it was converted to acetyl-CoA, and this was important not only for energetics but also for epigenetics because it served as a HAT co-factor to stimulate histone acetylation. Although the acetyl-CoA/HAT and HDAC inhibition mechanisms both stimulate histone acetylation, they were differentially utilized and upregulated different target genes. The acetyl-Co-A/HAT mechanism was predominant in normal cells and at low butyrate doses regardless of the Warbug effect and upregulated cell proliferation genes, whereas the HDAC inhibition mechanism was predominant in cancerous colonocytes and at high butyrate doses regardless of the Warburg effect and upregulated pro-apoptotic genes. These data have important implications in vivo. Because mucus produced by goblet cells within the crypts flows upward into the lumen, an endogenous butyrate gradient is believed to exist with lower concentrations at the base of crypts ( & lt;1 mM) than in the lumen (2-5 mM). Therefore, butyrate may contribute to normal colonic homeostasis by promoting the proliferation of stem cells and transit amplifying cells near the base while inducing apoptosis in cells exfoliating into the lumen. And due to the Warburg effect in tumor cells, butyrate is not readily metabolized, accumulates, and functions primarily as an HDAC inhibitor regardless of position within the epithelium. These results indicate that metabolic transformation (i.e., the Warburg effect) can drive aberrant epigenetic (histone acetylation) and transcriptome profiles in tumor cells compared to their cell of origin. Citation Format: Dallas Donohoe, Stephanie Montgomery, Leonard Collins, Darcy Holley, Virgina Godfrey, James Swenberg, Scott Bultman. Metaboloepigenetic effects of microbial-produced butyrate in cancer prevention. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr SY08-03. doi:10.1158/1538-7445.AM2013-SY08-03
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 111, No. 5 ( 2012-08-17)
    Abstract: Mating type swi tching/sucrose n on-fermenting (SWI/SNF) chromatin-remodeling complexes utilize either BRG1 or BRM as a catalytic subunit to alter nucleosome position and regulate gene expression. BRG1 is required for vascular endothelial cell (VEC) development and embryonic survival, whereas BRM is dispensable. Objective: To circumvent embryonic lethality and study Brg1 function in adult tissues, we used conditional gene targeting. To evaluate possible Brg1-Brm redundancy, we analyzed Brg1 mutant mice on wild-type and Brm -deficient backgrounds. Methods and Results: The inducible Mx1-Cre driver was used to mutate Brg1 in adult mice. These conditional-null mutants exhibited a tissue-specific phenotype and unanticipated functional compensation between Brg1 and Brm . Brg1 single mutants were healthy and had a normal lifespan, whereas Brg1/Brm double mutants exhibited cardiovascular defects and died within 1 month. BRG1 and BRM were required for the viability of VECs but not other cell types where both genes were also knocked out. The VEC phenotype was most evident in the heart, particularly in the microvasculature of the outer myocardium, and was recapitulated in primary cells ex vivo. VEC death resulted in vascular leakage, cardiac hemorrhage, secondary death of cardiomyocytes due to ischemia, and ventricular dissections. Conclusions: BRG1-catalyzed SWI/SNF complexes are particularly important in cardiovascular tissues. However, in contrast to embryonic development, in which Brm does not compensate, Brg1 is required in adult VECs only when Brm is also mutated. These results demonstrate for the first time that Brm functionally compensates for Brg1 in vivo and that there are significant changes in the relative importance of BRG1- and BRM-catalyzed SWI/SNF complexes during the development of an essential cell lineage.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2012
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. SY04-02-SY04-02
    Abstract: It is controversial whether dietary fiber protects against colorectal cancer because of conflicting results from human epidemiologic studies. These studies have been complicated by the participants’ genetic heterogeneity and differences in the composition of microbiota within their gastrointestinal tracts. To eliminate these confounding variables, we utilized a gnotobiotic mouse model of colorectal cancer. Our experiments were designed to investigate the function of butyrate because it is a short-chain fatty acid produced by bacterial fermentation of fiber in the colon at high (mM) levels and has potent energetic and epigenetic properties in host colonocytes. Here, we report that fiber did, in fact, have a chemoprotective effect but in a microbiota- and butyrate-dependent manner. The incidence, number, size, and histopathologic progression of AOM/DSS-induced colorectal tumors were significantly diminished when BALB/c mice were provided a high-fiber diet only if they were colonized with defined microbiota that included a butyrate-producing bacteria. This chemoprotective effect was attenuated when mice were colonized with the same microbiota except that the wild-type butyrate producer was replaced by a mutant strain with a 0.8-kb deletion in the butyryl-CoA synthesis operon. To confirm that butyrate is a causal factor, the chemoprotective effect was recapitulated in mice without any butyrate-producing bacteria if they were provided a butyrate-fortified diet. Our data support a general mechanism that includes microbial fermentation of fiber rather than fiber exclusively speeding colonic transit to minimize the exposure of colonocytes to ingested carcinogens. Our data also support a molecular mechanism that is metaboloepigenetic. Normal colonocytes utilize butyrate as their preferred energy source, whereas cancerous colonocytes rely on glucose because of the Warburg effect. Due to this metabolic difference, butyrate accumulated in tumors (as measured by LC-MS) and functioned as an HDAC inhibitor to increase histone acetylation levels and apoptosis. To support the applicability of this model to human cancer, we demonstrate that butyrate also accumulates at higher levels in human colorectal tumors than in normal colonic tissue, and this is associated with higher levels of histone acetylation in tumors. These results link diet and microbiota to a common metabolite that influences epigenetics and cancer predisposition. Citation Format: Dallas Donohoe, Darcy Holley, Leonard Collins, Stephanie Montgomery, Alan Whitmore, Andrew Hillhouse, Kaitlin Curry, Sarah Renner, Alicia Greenwalt, Elizabeth Ryan, Virginia Godfrey, Mark Heise, Deborah Threadgill, James Swenberg, David Threadgill, Scott Bultman. Dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr SY04-02. doi:10.1158/1538-7445.AM2014-SY04-02
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Prevention Research, American Association for Cancer Research (AACR), Vol. 8, No. 10_Supplement ( 2015-10-01), p. PL03-01-PL03-01
    Abstract: It is controversial whether dietary fiber protects against colorectal cancer because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energentic and epigenetic functions in colonocytes and tumor-suppressive properties in colorectal cancer cell lines. We colonized BALB/c mice with wild-type or mutant strains of a butyrate-producing bacterium in a gnotobiotic facility, provided them with high- or low-fiber diets that were otherwise identical and isocaloric, and used azoxymethane (AOM) to induce colorectal tumors. Analysis of these gnotobiotic mouse models demonstrated that fiber conferred a significant tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. To confirm that butyrate is a causal factor, the anticancer chemoprotective effect was recapitulated in mice without any butyrate-producing bacteria when they were provided a tributyrin-fortified diet. Our data support a general mechanism that includes microbial fermentation of fiber rather than fiber exclusively speeding colonic transit to minimize the exposure of colonocytes to ingested carcinogens. Our data also support a molecular mechanism that is metaboloepigenetic. Normal colonocytes utilize butyrate as their primary energy source, whereas cancerous colonocytes rely on glucose because of the Warburg effect. Due to this metabolic difference, butyrate accumulated in tumors and functioned as an HDAC inhibitor to increase histone acetylation levels globally and at pro-apototic (Fas) and cell-cycle (p21 and p27) target genes, which culminated in increased apoptosis and decreased cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone acetylation levels are elevated in colorectal adenocarcinomas compared to normal colonic tissues. These results, which link diet and microbiota to a tumor-suppressive metabolite, provide insight into conflicting epidemiologic findings and suggest that probiotic/prebiotic strategies can modulate an endogenous HDAC inhibitor for anticancer chemoprevention without the adverse effects associated with synthetic HDAC inhibitors used in chemotherapy. Citation Format: Dallas Donohoe, Darcy Holley, Leonard Collins, Stephanie Montgomery, Alan Whitmore, Kaitlin Curry, Sarah Renner, Alicia Greenwalt, Elizabeth Ryan, Virginia Godfrey, Deborah Threadgill, James Swenberg, David Threadgill, Scott Bultman. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. [abstract]. In: Proceedings of the Thirteenth Annual AACR International Conference on Frontiers in Cancer Prevention Research; 2014 Sep 27-Oct 1; New Orleans, LA. Philadelphia (PA): AACR; Can Prev Res 2015;8(10 Suppl): Abstract nr PL03-01.
    Type of Medium: Online Resource
    ISSN: 1940-6207 , 1940-6215
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2422346-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 4, No. 12 ( 2014-12-01), p. 1387-1397
    Abstract: Whether dietary fiber protects against colorectal cancer is controversial because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumor-suppressive properties in colorectal cancer cell lines. We used gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as a histone deacetylase (HDAC) inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared with normal colonic tissues. Significance: These results, which link diet and microbiota to a tumor-suppressive metabolite, provide insight into conflicting epidemiologic findings and suggest that probiotic/prebiotic strategies can modulate an endogenous HDAC inhibitor for anticancer chemoprevention without the adverse effects associated with synthetic HDAC inhibitors used in chemotherapy. Cancer Discov; 4(12); 1387–97. ©2014 AACR. See related commentary by Sebastián and Mostoslavsky, p. 1368 This article is highlighted in the In This Issue feature, p. 1355
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...