GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hofacker, Ivo L  (3)
  • 2020-2024  (3)
Material
Language
Years
  • 2020-2024  (3)
Year
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Bioinformatics
    In: Bioinformatics, Oxford University Press (OUP)
    Abstract: In living organisms, many RNA molecules are modified post-transcriptionally. This turns the widely known four-letter RNA alphabet ACGU into a much larger one with currently more than 300 known distinct modified bases. The roles for the majority of modified bases remain uncertain, but many are already well-known for their ability to influence the preferred structures that an RNA may adopt. In fact, tRNAs sometimes require certain modifications to fold into their cloverleaf shaped structure. However, predicting the structure of RNAs with base modifications is still difficult due to the lack of efficient algorithms that can deal with the extended sequence alphabet, as well as missing parameter sets that account for the changes in stability induced by the modified bases. Results We present an approach to include sparse energy parameter data for modified bases into the ViennaRNA Package. Our method does not require any changes to the underlying efficient algorithms but instead uses a set of plug-in constraints that adapt the predictions in terms of loop evaluation at runtime. These adaptations are efficient in the sense that they are only performed for loops where additional parameters are actually available for. In addition, our approach also facilitates the inclusion of more modified bases as soon as further parameters become available. Availability Source code and documentation are available at https://www.tbi.univie.ac.at/RNA Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Bioinformatics Vol. 37, No. 15 ( 2021-08-09), p. 2126-2133
    In: Bioinformatics, Oxford University Press (OUP), Vol. 37, No. 15 ( 2021-08-09), p. 2126-2133
    Abstract: Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. Method We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. Results We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. Availabilityand implementation https://github.com/ViennaRNA/RNAxplorer/. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Bioinformatics Vol. 39, No. 1 ( 2023-01-01)
    In: Bioinformatics, Oxford University Press (OUP), Vol. 39, No. 1 ( 2023-01-01)
    Abstract: Folding during transcription can have an important influence on the structure and function of RNA molecules, as regions closer to the 5′ end can fold into metastable structures before potentially stronger interactions with the 3′ end become available. Thermodynamic RNA folding models are not suitable to predict structures that result from cotranscriptional folding, as they can only calculate properties of the equilibrium distribution. Other software packages that simulate the kinetic process of RNA folding during transcription exist, but they are mostly applicable for short sequences. Results We present a new algorithm that tracks changes to the RNA secondary structure ensemble during transcription. At every transcription step, new representative local minima are identified, a neighborhood relation is defined and transition rates are estimated for kinetic simulations. After every simulation, a part of the ensemble is removed and the remainder is used to search for new representative structures. The presented algorithm is deterministic (up to numeric instabilities of simulations), fast (in comparison with existing methods), and it is capable of folding RNAs much longer than 200 nucleotides. Availability and implementation This software is open-source and available at https://github.com/ViennaRNA/drtransformer. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1468345-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...