GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2616-2616
    Abstract: Introduction: Early-phase clinical trials of fenretinide (4-HPR, a synthetic retinoid) have demonstrated durable complete responses in T-cell lymphoma (TCL), neuroblastoma (NB), and signals of activity in ovarian cancer (OV). Cytotoxic mechanisms of 4-HPR include increase of reactive oxygen species (ROS) and dihydroceramides (DHCs). Major 4-HPR metabolites are N-(4-methoxyphenyl)retinamide (MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (oxo-HPR). MPR is more abundant in human plasma; oxo-HPR is present in lower concentrations. We assessed the relative cytotoxicity and increase of ROS and DHCs at equimolar concentrations of 4-HPR, MPR, and oxo-HPR in TCL, NB, and OV cell lines. Methods: A panel of twelve TCL, NB, and OV cell lines was studied in room air (20% O2) and physiologic (5% O2) cultured conditions. Cytotoxicity (0-10 μM) was assessed by DIMSCAN fluorescence cytotoxicity assay. ROS was measured via DCFDA with flow cytometry and sphingolipids (including DHCs, ceramides, sphingoid bases, sphingomyelins, and glycosylated ceramides) by quantitative tandem mass spectrometry. Results: 4-HPR (10 μM) demonstrated & gt;3 logs of cell kill in 6 of 12 cell lines. Oxo-HPR demonstrated comparable cytotoxicity to that of 4-HPR in all cell lines. MPR lacked cytotoxicity and when combined with 4-HPR, did not increase cytotoxicity or induce antagonism. There was no observed difference in cytotoxicity between 4-HPR and oxo-HPR in either oxygen condition. Both 4-HPR and oxo-HPR significantly increased ROS compared to controls (p & lt;0.05) in three cell lines tested (1 each of TCL, NB, and OV). Relative to 4-HPR, the ROS increased by oxo-HPR was equal in two cell lines (COG-LL-317h and TX-OV-186h), and higher in one (FU-NB-2006h). There was a significant (35 to 75-fold) increase of various DHC species (C16-, C18-, C22-, C24-, or C24:1-DHC) with both 4-HPR and oxo-HPR in the four cell lines tested (p & lt;0.05). Two of the four cell lines (Jurkat and TX-OV-186h) demonstrated a greater increase in DHCs with 4-HPR compared to oxo-HPR (p & lt;0.05), while the increase was not statistically different in the other two (COG-LL-317h and FU-NB-2006h). Conclusions: In contrast to the higher cytotoxicity of oxo-HPR compared with 4-HPR reported by Villani et al (Cancer Res, 15:3238, 2006), we observed relatively comparable cytotoxicity and increases of ROS and DHCs with both 4-HPR and oxo-HPR. MPR was not cytotoxic nor did it antagonize 4-HPR. These results support that the cytotoxicity and pharmacodynamics of 4-HPR and oxo-HPR in in vitro culture systems are equivalent. Citation Format: Michael M. Song, Monish R. Makena, Ashly Hindle, Balakrishna Koneru, Thinh H. Nguyen, Hwangeui Cho, Barry J. Maurer, Min H. Kang, C. Patrick Reynolds. Comparison of the cytotoxicity and increase of reactive oxygen species and dihydroceramides of fenretinide to its major metabolites (4-oxo- and 4-methoxyphenyl fenretinide) in T-cell lymphoid malignancy, neuroblastoma, and ovarian cancer cell lines. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2616. doi:10.1158/1538-7445.AM2015-2616
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Anti-Cancer Drugs, Ovid Technologies (Wolters Kluwer Health), Vol. 30, No. 2 ( 2019-02), p. 117-127
    Type of Medium: Online Resource
    ISSN: 0959-4973
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 2025803-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Anti-Cancer Drugs, Ovid Technologies (Wolters Kluwer Health), Vol. 32, No. 1 ( 2021-1), p. 34-43
    Abstract: T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs. There exist some key differences between HDAC inhibitors. Therefore, we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. We demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo , vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous TCLM xenograft models than other groups. Fenretinide + vorinostat increased reactive oxygen species (ROS, measured by 2′,7′-dichlorodihydrofluorescein diacetate dye), resulting in increased apoptosis (via transferase dUTP nick end labeling assay) and histone acetylation (by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by the antioxidant vitamin C. Like romidepsin, vorinostat combined with fenretinide achieved synergistic cytotoxic activity and increased histone acetylation in preclinical models of TCLMs, but not in non-malignant cells. As vorinostat is an oral agent and not a P-glycoprotein substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs.
    Type of Medium: Online Resource
    ISSN: 0959-4973
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2025803-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Pediatric Blood & Cancer, Wiley, Vol. 65, No. 12 ( 2018-12)
    Abstract: Maintenance therapy with 13‐cis‐retinoic acid and immunotherapy (given after completion of intensive cytotoxic therapy) improves outcome for high‐risk neuroblastoma patients. The synthetic retinoid fenretinide (4‐HPR) achieved multiple complete responses in relapse/refractory neuroblastoma in early‐phase clinical trials, has low systemic toxicity, and has been considered for maintenance therapy clinical trials. Difluoromethylornithine (DFMO, an irreversible inhibitor of ornithine decarboxylase with minimal single‐agent clinical response data) is being used for maintenance therapy of neuroblastoma. We evaluated the cytotoxic activity of DFMO and fenretinide in neuroblastoma cell lines. Procedure We tested 16 neuroblastoma cell lines in bone marrow‐level hypoxia (5% O 2 ) using the DIMSCAN cytotoxicity assay. Polyamines were measured by HPLC–mass spectrometry and apoptosis by transferase dUTP nick end labeling (TUNEL) using flow cytometry. Results At clinically achievable levels (100 μM), DFMO significantly decreased ( P   〈  0.05) polyamine putrescine and achieved modest cytotoxicity ( 〈 1 log (90% cytotoxicity). Prolonged exposures (7 days) or culture in 2% and 20% O 2 did not enhance DFMO cytotoxicity. However, fenretinide (10 μM) even at a concentration lower than clinically achievable in neuroblastoma patients (20 μM) induced ≥ 1 log cell kill in 14 cell lines. The average IC 90 and IC 99 of fenretinide was 4.7 ± 1 μM and 9.9 ± 1.8 μM, respectively. DFMO did not induce a significant increase ( P   〉  0.05) in apoptosis (TUNEL assay). Apoptosis by fenretinide was significantly higher ( P   〈  0.001) compared with DFMO or controls. Conclusions DFMO as a single agent has minimal cytotoxic activity for neuroblastoma cell lines.
    Type of Medium: Online Resource
    ISSN: 1545-5009 , 1545-5017
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2130978-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1293-1293
    Abstract: MYCN genomic amplification is one of the risk factors in neuroblastoma. 13-cis retinoic acid (13-cisRA), a differentiating agent, down-regulates MYCN protein and is part of neuroblastoma maintenance therapy. Despite the improvement in clinical outcome with 13-cisRA, anti-GD2 monoclonal antibody plus cytokine immunotherapy given in first response ~40% of high-risk neuroblastoma patients still die of recurrent disease. Although MYC genomic amplification is rare in neuroblastoma (~1%), 11% of neuroblastoma primary tumors collected at diagnosis (Dx) have high c-MYC protein suggesting that MYC transcriptional activation rather than its gene amplification drives such tumors. Here, we sought to investigate the role of MYC oncogene in progressive disease (PD) and to molecularly characterize mechanisms of MYC expression in neuroblastoma. We report transcriptional activation of MYC medicated by the OCT4 (encoded by POU5F1), functionally replacing MYCN in 13-cisRA-resistant progressive disease neuroblastoma. In large panels of neuroblastoma patient-derived cell lines (19 Dx and 16 PD) and patient-derived xenograft PDX models (8 Dx and 9 PD), we confirmed that c-MYC expression levels were higher in PD relative to Dx lines (P = 0.0005). We identified OCT4 and TCF3 as transcription factors highly expressed in neuroblastoma cells with high c-MYC. Subsequently, we confirmed two novel OCT4-binding sites (including OBS1 and OBS2) located in the MYC promoter/enhancer region: -1209 to -1140 and found that OCT4 NH2-terminal domain (NTD) and POU specific domain (POUs) are critical for MYC transcriptional activation. To identify kinases that is associated with OCT4-induced c-MYC activation, we used mass spectrometry and PhosphoMotif Finder® and identified MAPKAPK2 (MK2) as one of the upstream kinases that can bind to and directly regulate the OCT4 biological function by phosphorylation at its amino acid Ser111 residue to transcriptionally activate MYC expression. The data in 175 MYCN non-amplified high-risk primary tumors (TARGET database) showed that MAPKAPK2 positively correlated with MYC expression (P & lt; 0.001) and overall survival was lower (P & lt; 0.001) for patients with high MAPKAPK2. Also, OCT4, MK2, and c-MYC were higher in PD relative to Dx neuroblastomas models. Functional studies by gene knockdown of the POU5F1 or MAPKAPK2 using shRNAs showed decreased c-MYC expression, inhibition of cell proliferation, and restoring neurite outgrowth in response to 13-cisRA. In conclusion, high c-MYC independent of genomic amplification, not MYCN amplification, is associated with disease progression in neuroblastoma. The MK2-mediated OCT4 transcriptional activation is a novel mechanism for MYC activation in PD neuroblastoma and provides a potential novel therapeutic target. Citation Format: Sung Jen Wei, Thinh H. Nguyen, Dustin G. Mook, Monish R. Makena, Dattesh Verlekar, Ashly Hindle, Gloria Martinez, Shengping Yang, Hiroyuki Shimada, C. Patrick Reynolds, Min H. Kang. MYC transcription activation mediated by OCT4 as a mechanism of resistance to 13-cisRA-mediated differentiation in neuroblastoma [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1293.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 4812-4812
    Abstract: Introduction: T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. Pan-histone deacetylase (HDAC) inhibitors vorinostat and belinostat, and class I specific HDAC inhibitor romidepsin have achieved FDA registration as 2nd line therapies for peripheral and/or cutaneous T-cell lymphomas. The cytotoxic retinoid fenretinide achieved durable complete responses against T-cell lymphomas in early-phase clinical trials and T-cell lymphoma patients who failed prior HDAC inhibitor treatment responded to fenretinide (Clinical Cancer Res 23:4550-4555, 2017). Fenretinide is currently being evaluated in a Phase IIa clinical trial for relapsed/refractory PTCL patients (NCT02495415). We have previously shown romidepsin and fenretinide synergize in preclinical models of T-cell lymphoid malignancies (Molecular Cancer Therapeutics 16:649-661, 2017). There exist some key differences in the activity of various classes of HDAC's, which have significantly different chemical structures and metabolic profiles. Therefore we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. Methods and Results: Using the DIMSCAN cytotoxicity assay, we demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically-achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo, vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous (COG-LL-317m and TX-LY-183x PDX) TCLM xenograft models than single agent vorinostat or fenretinide + ketoconazole. Fenretinide + vorinostat caused a reactive oxygen species (ROS, measured by DCFDA dye)-dependent increase in apoptosis (via TUNEL assay), and histone acetylation (measured by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by antioxidant vitamin C. Vorinostat + fenretinide activated p38 and JNK via ROS, and shRNA knockdown of p38 and JNK1 significantly decreased the synergistic cytotoxicity and apoptosis. Vorinostat + fenretinide also showed synergistic cytotoxicity for six B-lymphoid malignancy cell lines. Conclusion: Like romidepsin, vorinostat combined with fenretinide achieved synergistic activity in preclinical models of TCLMs, but not in non-malignant cells, via a novel molecular mechanism. As vorinostat is an oral agent and not a PGP substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs. Citation Format: Monish Ram Makena, Thinh H. Nguyen, Balakrishna Koneru, Ashly Hindle, Wan-Hsi Chen, Dattesh U. Verlekar, Min H. Kang, C. Patrick Reynolds. Vorinostat and fenretinide synergize in preclinical models of T-cell lymphoid malignancies via reactive oxygen species [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4812.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 11, No. 5 ( 2020-05-14)
    Abstract: Despite the improvement in clinical outcome with 13- cis -retinoic acid (13- cis RA) + anti-GD2 antibody + cytokine immunotherapy given in first response ~40% of high-risk neuroblastoma patients die of recurrent disease. MYCN genomic amplification is a biomarker of aggressive tumors in the childhood cancer neuroblastoma. MYCN expression is downregulated by 13- cis RA, a differentiating agent that is a component of neuroblastoma therapy. Although MYC amplification is rare in neuroblastoma at diagnosis, we report transcriptional activation of MYC medicated by the transcription factor OCT4, functionally replacing MYCN in 13- cis RA-resistant progressive disease neuroblastoma in large panels of patient-derived cell lines and xenograft models. We identified novel OCT4-binding sites in the MYC promoter/enhancer region that regulated MYC expression via phosphorylation by MAPKAPK2 (MK2). OCT4 phosphorylation at the S111 residue by MK2 was upstream of MYC transcriptional activation. Expression of OCT4, MK2, and c-MYC was higher in progressive disease relative to pre-therapy neuroblastomas and was associated with inferior patient survival. OCT4 or MK2 knockdown decreased c-MYC expression and restored the sensitivity to 13- cis RA. In conclusion, we demonstrated that high c-MYC expression independent of genomic amplification is associated with disease progression in neuroblastoma. MK2-mediated OCT4 transcriptional activation is a novel mechanism for activating the MYC oncogene in progressive disease neuroblastoma that provides a therapeutic target.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 12 ( 2020-06-15), p. 2663-2675
    Abstract: Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P & lt; 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT–expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. Significance: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Anti-Cancer Drugs, Ovid Technologies (Wolters Kluwer Health), Vol. 32, No. 3 ( 2021-03), p. 233-247
    Abstract: DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O 6 -methylguanine-DNA methyltransferase ( MGMT ) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O 6 -benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo . These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.
    Type of Medium: Online Resource
    ISSN: 0959-4973
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2025803-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 13, No. 607 ( 2021-08-18)
    Abstract: Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P 〈 0.05; in vivo mouse event-free survival (EFS), P 〈 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC 50 , P 〈 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro ( P 〈 0.001) and in four ALT xenografts in vivo (EFS, P 〈 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...