GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Heywood, I.  (9)
  • 2020-2024  (9)
  • Physics  (9)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 657 ( 2022-01), p. A56-
    Abstract: MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0  〈   z   〈  0.09 and 0.19  〈   z   〈  0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2022
    In:  The Astrophysical Journal Vol. 925, No. 2 ( 2022-02-01), p. 165-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 925, No. 2 ( 2022-02-01), p. 165-
    Abstract: The inner ∼200 pc region of the Galaxy contains a 4 million M ⊙ supermassive black hole (SMBH), significant quantities of molecular gas, and star formation and cosmic-ray energy densities that are roughly two orders of magnitude higher than the corresponding levels in the Galactic disk. At a distance of only 8.2 kpc, the region presents astronomers with a unique opportunity to study a diverse range of energetic astrophysical phenomena, from stellar objects in extreme environments, to the SMBH and star-formation-driven feedback processes that are known to influence the evolution of galaxies as a whole. We present a new survey of the Galactic center conducted with the South African MeerKAT radio telescope. Radio imaging offers a view that is unaffected by the large quantities of dust that obscure the region at other wavelengths, and a scene of striking complexity is revealed. We produce total-intensity and spectral-index mosaics of the region from 20 pointings (144 hr on-target in total), covering 6.5 square degrees with an angular resolution of 4″ at a central frequency of 1.28 GHz. Many new features are revealed for the first time due to a combination of MeerKAT’s high sensitivity, exceptional u , v -plane coverage, and geographical vantage point. We highlight some initial survey results, including new supernova remnant candidates, many new nonthermal filament complexes, and enhanced views of the Radio Arc bubble, Sagittarius A, and Sagittarius B regions. This project is a South African Radio Astronomy Observatory public legacy survey, and the image products are made available with this article.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal, American Astronomical Society, Vol. 922, No. 2 ( 2021-12-01), p. 154-
    Abstract: We present the full panchromatic afterglow light-curve data of GW170817, including new radio data as well as archival optical and X-ray data, between 0.5 and 940 days post-merger. By compiling all archival data and reprocessing a subset of it, we have evaluated the impact of differences in data processing or flux determination methods used by different groups and attempted to mitigate these differences to provide a more uniform data set. Simple power-law fits to the uniform afterglow light curve indicate a t 0.86±0.04 rise, a t −1.92±0.12 decline, and a peak occurring at 155 ± 4 days. The afterglow is optically thin throughout its evolution, consistent with a single spectral index (−0.584 ± 0.002) across all epochs. This gives a precise and updated estimate of the electron power-law index, p = 2.168 ± 0.004. By studying the diffuse X-ray emission from the host galaxy, we place a conservative upper limit on the hot ionized interstellar medium density, 〈 0.01 cm −3 , consistent with previous afterglow studies. Using the late-time afterglow data we rule out any long-lived neutron star remnant having a magnetic field strength between 10 10.4 and 10 16 G. Our fits to the afterglow data using an analytical model that includes Very Long Baseline Interferometry proper motion from Mooley et al., and a structured jet model that ignores the proper motion, indicates that the proper-motion measurement needs to be considered when seeking an accurate estimate of the viewing angle.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 646 ( 2021-02), p. A35-
    Abstract: We present the H  I emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (H  I ) ever undertaken, extending our knowledge of H  I emission to z  = 0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0  〈   z   〈  0.4 will be detected directly in H  I , with statistical detections extending to z  = 0.6. The survey allows us to explore H  I as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with H  I mass 〈 10 8 M ⊙ , which allows us to study the low-mass galaxy population. The 20 deg 2 main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, H  I , and stellar mass ranges of the sample to date.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 619, No. 7970 ( 2023-07-20), p. 487-490
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 660 ( 2022-04), p. A81-
    Abstract: Context. The Shapley Supercluster (⟨ z ⟩≈0.048) contains several tens of gravitationally bound clusters and groups, making it an ideal subject for radio studies of cluster mergers. Aims. We used new high sensitivity radio observations to investigate the less energetic events of mass assembly in the Shapley Supercluster from supercluster down to galactic scales. Methods. We created total intensity images of the full region between A3558 and A3562, from ∼230 to ∼1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities ranging from ∼6 to ∼100 μJy beam −1 . We performed a detailed morphological and spectral study of the extended emission features, complemented with ESO-VST optical imaging and X-ray data from XMM-Newton . Results. We report the first GHz frequency detection of extremely low brightness intercluster diffuse emission on a ∼1 Mpc scale connecting a cluster and a group, namely: A3562 and the group SC 1329–313. It is morphologically similar to the X-ray emission in the region. We also found (1) a radio tail generated by ram pressure stripping in the galaxy SOS 61086 in SC 1329–313; (2) a head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar; (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we confirm the ultra-steep spectrum nature of the radio halo in A3562. Conclusions. Our study strongly supports the scenario of a flyby of SC 1329–313 north of A3562 into the supercluster core. This event perturbed the centre of A3562, leaving traces of this interaction in the form of turbulence between A3562 and SC 1329–313, at the origin of the radio bridge and eventually affecting the evolution of individual supercluster galaxies by triggering ram pressure stripping. Our work shows that minor mergers can be spectacular and have the potential to generate diffuse radio emission that carries important information on the formation of large-scale structures in the Universe.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Astrophysical Journal, American Astronomical Society, Vol. 910, No. 2 ( 2021-04-01), p. 106-
    Abstract: To investigate the growth history of galaxies, we measure the rest-frame radio, ultraviolet (UV), and optical sizes of 98 radio-selected, star-forming galaxies (SFGs) distributed over 0.3 ≲ z ≲ 3 with a median stellar mass of log ( M ⋆ / M ⊙ ) ≈ 10.4 . We compare the size of galaxy stellar disks, traced by rest-frame optical emission, relative to the overall extent of star formation activity that is traced by radio continuum emission. Galaxies in our sample are identified in three Hubble Frontier Fields: MACS J0416.1−2403, MACS J0717.5+3745, and MACS J1149.5+2223. Radio continuum sizes are derived from 3 and 6 GHz radio images (≲0.″6 resolution, ≈0.9 μ Jy beam −1 noise level) from the Karl G. Jansky Very Large Array. Rest-frame UV and optical sizes are derived using observations from the Hubble Space Telescope and the Advanced Camera for Surveys and Wide Field Camera 3 instruments. We find no clear dependence between the 3 GHz radio size and stellar mass of SFGs, which contrasts with the positive correlation between the UV/optical size and stellar mass of galaxies. Focusing on SFGs with log ( M ⋆ / M ⊙ ) 〉 10 , we find that the radio/UV/optical emission tends to be more compact in galaxies with high star formation rates (≳100 M ⊙ yr −1 ), suggesting that a central, compact starburst (and/or an active galactic nucleus) resides in the most luminous galaxies of our sample. We also find that the physical radio/UV/optical size of radio-selected SFGs with log( M ⋆ / M ⊙ ) 〉 10 increases by a factor of 1.5–2 from z ≈ 3 to z ≈ 0.3, yet the radio emission remains two to three times more compact than that from the UV/optical. These findings indicate that these massive, radio-selected SFGs at 0.3 ≲ z ≲ 3 tend to harbor centrally enhanced star formation activity relative to their outer disks.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 678 ( 2023-10), p. A56-
    Abstract: Context. The properties and evolution of magnetic fields surrounding galaxies are observationally largely unconstrained. The detection and study of these magnetic fields is important to understand galaxy evolution since magnetic fields are tracers for dynamical processes in the circumgalactic medium (CGM) and can have a significant impact on the evolution of the CGM. Aims. The Faraday rotation measure (RM) of the polarized light of background radio sources passing through the magnetized CGM of intervening galaxies can be used as a tracer for the strength and extent of magnetic fields around galaxies. Methods. We used rotation measures observed by the MIGHTEE-POL (MeerKAT International GHz Tiered Extragalactic Exploration polarization) survey by MeerKAT in the XMM-LSS and COSMOS fields to investigate the RM around foreground star-forming galaxies. We used spectroscopic catalogs of star-forming and blue cloud galaxies to measure the RM of MIGHTEE-POL sources as a function of the impact parameter from the intervening galaxy. In addition, we examined the dependence of the RM on redshift. We then repeated this procedure using a deeper galaxy catalog with photometric redshifts. Results. For the spectroscopic star-forming sample, we find a redshift-corrected |RM| excess of 5.6 ± 2.3 rad m −2 which corresponds to a 2.5 σ significance around galaxies with a median redshift of z  = 0.46 for impact parameters below 130 kpc only selecting the intervenor with the smallest impact parameter. Making use of a photometric galaxy catalog and taking into account all intervenors with M g   〈  −13.6 mag, the signal disappears. We find no indication for a correlation between redshift and RM, nor do we find a connection between the total number of intervenors to the total |RM|. Conclusions. We have presented tentative evidence that the CGM of star-forming galaxies is permeated by coherent magnetic fields within the virial radius. We conclude that mostly bright, star-forming galaxies with impact parameters less than 130 kpc significantly contribute to the RM of the background radio source.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Astrophysical Journal, American Astronomical Society, Vol. 910, No. 2 ( 2021-04-01), p. 105-
    Abstract: The Frontier Fields project is an observational campaign targeting six galaxy clusters, with the intention of using the magnification provided by gravitational lensing to study galaxies that are extremely faint or distant. We used the Karl G. Jansky Very Large Array (VLA) at 3 and 6 GHz to observe three Frontier Fields: MACS J0416.1−2403 ( z = 0.396), MACS J0717.5+3745 ( z = 0.545), and MACS J1149.5+2223 ( z = 0.543). The images reach noise levels of ∼1 μ Jy beam −1 with subarcsecond resolution (∼2.5 kpc at z = 3), providing a high-resolution view of high- z star-forming galaxies that is unbiased by dust obscuration. We generate dual-frequency continuum images at two different resolutions per band, per cluster, and derive catalogs totaling 1966 compact radio sources. Components within the areas of Hubble Space Telescope and Subaru observations are cross-matched, providing host galaxy identifications for 1296 of them. We detect 13 moderately lensed (2.1 〈 μ 〈 6.5) sources, one of which has a demagnified peak brightness of 0.9 μ Jy beam −1 , making it a candidate for the faintest radio source ever detected. There are 66 radio sources exhibiting complex morphologies, and 58 of these have host galaxy identifications. We reveal that MACS J1149.5+2223 is not a cluster with a double relic, as the western candidate relic is resolved as a double-lobed radio galaxy associated with a foreground elliptical at z = 0.24. The VLA Frontier Fields project is a public legacy survey. The image and catalog products from this work are freely available.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...