GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
  • Hesselbo, Stephen P.  (2)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 8 ( 2020-02-25), p. 3974-3982
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 8 ( 2020-02-25), p. 3974-3982
    Abstract: Global perturbations to the Early Jurassic environment (∼201 to ∼174 Ma), notably during the Triassic–Jurassic transition and Toarcian Oceanic Anoxic Event, are well studied and largely associated with volcanogenic greenhouse gas emissions released by large igneous provinces. The long-term secular evolution, timing, and pacing of changes in the Early Jurassic carbon cycle that provide context for these events are thus far poorly understood due to a lack of continuous high-resolution δ 13 C data. Here we present a δ 13 C TOC record for the uppermost Rhaetian (Triassic) to Pliensbachian (Lower Jurassic), derived from a calcareous mudstone succession of the exceptionally expanded Llanbedr (Mochras Farm) borehole, Cardigan Bay Basin, Wales, United Kingdom. Combined with existing δ 13 C TOC data from the Toarcian, the compilation covers the entire Lower Jurassic. The dataset reproduces large-amplitude δ 13 C TOC excursions ( 〉 3‰) recognized elsewhere, at the Sinemurian–Pliensbachian transition and in the lower Toarcian serpentinum zone, as well as several previously identified medium-amplitude (∼0.5 to 2‰) shifts in the Hettangian to Pliensbachian interval. In addition, multiple hitherto undiscovered isotope shifts of comparable amplitude and stratigraphic extent are recorded, demonstrating that those similar features described earlier from stratigraphically more limited sections are nonunique in a long-term context. These shifts are identified as long-eccentricity (∼405-ky) orbital cycles. Orbital tuning of the δ 13 C TOC record provides the basis for an astrochronological duration estimate for the Pliensbachian and Sinemurian, giving implications for the duration of the Hettangian Stage. Overall the chemostratigraphy illustrates particular sensitivity of the marine carbon cycle to long-eccentricity orbital forcing.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 28 ( 2014-07-15), p. 10073-10076
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 28 ( 2014-07-15), p. 10073-10076
    Abstract: The Toarcian oceanic anoxic event (T-OAE; ∼183 million y ago) is possibly the most extreme episode of widespread ocean oxygen deficiency in the Phanerozoic, coinciding with rapid atmospheric p CO 2 increase and significant loss of biodiversity in marine faunas. The event is a unique past tipping point in the Earth system, where rapid and massive release of isotopically light carbon led to a major perturbation in the global carbon cycle as recorded in organic and inorganic C isotope records. Modern marine ecosystems are projected to experience major loss in biodiversity in response to enhanced ocean anoxia driven by anthropogenic release of greenhouse gases. Potential consequences of this anthropogenic forcing can be approximated by studying analog environmental perturbations in the past such as the T-OAE. Here we present to our knowledge the first organic carbon isotope record derived from the organic matrix in the calcite rostra of early Toarcian belemnites. We combine both organic and calcite carbon isotope analyses of individual specimens of these marine predators to obtain a refined reconstruction of the early Toarcian global exogenic carbon cycle perturbation and belemnite paleoecology. The organic carbon isotope data combined with measurements of oxygen isotope values from the same specimens allow for a more robust interpretation of the interplay between the global carbon cycle perturbation, environmental change, and biotic response during the T-OAE. We infer that belemnites adapted to environmental change by shifting their habitat from cold bottom waters to warm surface waters in response to expanded seafloor anoxia.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...