GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 8, No. 12 ( 1997-12), p. 2647-2657
    Abstract: It was previously shown that mutations of integrin α4 chain sites, within putative EF-hand-type divalent cation-binding domains, each caused a marked reduction in α4β1-dependent cell adhesion. Some reports have suggested that α-chain “EF-hand” sites may interact directly with ligands. However, we show here that mutations of three different α4 “EF-hand” sites each had no effect on binding of soluble monovalent or bivalent vascular cell adhesion molecule 1 whether measured indirectly or directly. Furthermore, these mutations had minimal effect on α4β1-dependent cell tethering to vascular cell adhesion molecule 1 under shear. However, EF-hand mutants did show severe impairments in cellular resistance to detachment under shear flow. Thus, mutation of integrin α4 “EF-hand-like” sites may impair 1) static cell adhesion and 2) adhesion strengthening under shear flow by a mechanism that does not involve alterations of initial ligand binding.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 1997
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 9, No. 10 ( 1998-10), p. 2751-2765
    Abstract: Here we describe an association between α3β1 integrin and transmembrane-4 superfamily (TM4SF) protein CD151. This association is maintained in relatively stringent detergents and thus is remarkably stable in comparison with previously reported integrin–TM4SF protein associations. Also, the association is highly specific (i.e., observed in vitro in absence of any other cell surface proteins), and highly stoichiometric (nearly 90% of α3β1 associated with CD151). In addition, α3β1 and CD151 appeared in parallel on many cell lines and showed nearly identical skin staining patterns. Compared with other integrins, α3β1 exhibited a considerably higher level of associated phosphatidylinositol-4-kinase (PtdIns 4-kinase) activity, most of which was removed upon immunodepletion of CD151. Specificity for CD151 and PtdIns 4-kinase association resided in theextracellular domain of α3β1, thus establishing a novel paradigm for the specific recruitment of anintracellular signaling molecule. Finally, antibodies to either CD151 or α3β1 caused a ∼88–92% reduction in neutrophil motility in response to f-Met-Leu-Phe on fibronectin, suggesting an functionally important role of these complexes in cell migration.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 1998
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Rockefeller University Press ; 1997
    In:  The Journal of Experimental Medicine Vol. 186, No. 8 ( 1997-10-20), p. 1347-1355
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 186, No. 8 ( 1997-10-20), p. 1347-1355
    Abstract: Previous studies have shown that integrin α chain tails make strong positive contributions to integrin-mediated cell adhesion. We now show here that integrin α4 tail deletion markedly impairs static cell adhesion by a mechanism that does not involve altered binding of soluble vascular cell adhesion molecule 1 ligand. Instead, truncation of the α4 cytoplasmic domain caused a severe deficiency in integrin accumulation into cell surface clusters, as induced by ligand and/ or antibodies. Furthermore, α4 tail deletion also significantly decreased the membrane diffusivity of α4β1, as determined by a single particle tracking technique. Notably, low doses of cytochalasin D partially restored the deficiency in cell adhesion seen upon α4 tail deletion. Together, these results suggest that α4 tail deletion exposes the β1 cytoplasmic domain, leading to cytoskeletal associations that apparently restrict integrin lateral diffusion and accumulation into clusters, thus causing reduced static cell adhesion. Our demonstration of integrin adhesive activity regulated through receptor diffusion/clustering (rather than through altered ligand binding affinity) may be highly relevant towards the understanding of inside–out signaling mechanisms for β1 integrins.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1997
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...