GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2012
    In:  Antimicrobial Agents and Chemotherapy Vol. 56, No. 12 ( 2012-12), p. 6304-6309
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 56, No. 12 ( 2012-12), p. 6304-6309
    Abstract: The echinocandins caspofungin, micafungin, and anidulafungin, inhibitors of cell wall β-1,3-glucan synthesis, were recently elevated to first-line agents for treating infections due to the azole-refractory yeast Candida glabrata . In Candida albicans , echinocandin resistance is strictly associated with mutations in Fks1, a large integral membrane protein and putative β-1,3-glucan synthase, while mutations in both Fks1 and its paralog Fks2 (but not Fks3) have been associated with resistance in C. glabrata . To further explore their function, regulation, and role in resistance, C. glabrata fks genes were disrupted and subjected to mutational analysis, and their differential regulation was explored. An fks1 Δ fks2 Δ double disruptant was not able to be generated; otherwise, all three single and remaining two double disruptants displayed normal growth and echinocandin susceptibility, indicating Fks1-Fks2 redundancy. Selection on echinocandin-containing medium for resistant mutants was dependent on strain background: only fks1 Δ and fks1 Δ fks3 Δ strains consistently yielded mutants exhibiting high-level resistance, all with Fks2 hot spot 1 mutations. Thus, Fks1-Fks2 redundancy attenuates the rate of resistance; further analysis showed that it also attenuates the impact of resistance-conferring mutations. Growth of the fks1 Δ and, especially, fks1 Δ fks3 Δ strains was specifically susceptible to the calcineurin inhibitor FK506. Relatedly, FK506 addition or calcineurin gene CMP2 disruption specifically reversed Fks2-mediated resistance of laboratory mutants and clinical isolates. RNA analysis suggests that transcriptional control is not the sole mechanism by which calcineurin modulates Fks2 activity.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 66, No. 1 ( 2022-01-18)
    Abstract: ERG11 sequencing of 28 Candida auris clade III isolates revealed the presence of concomitant V125A and F126L substitutions. Heterologous expression of Erg11-V125A/F126L in Saccharomyces cerevisiae led to reduced fluconazole and voriconazole susceptibilities. Generation of single substitution gene variants through site-directed mutagenesis uncovered that F126L primarily contributes to the elevated triazole MICs. A similar yet diminished pattern of reduced susceptibility was observed with the long-tailed triazoles posaconazole and itraconazole for the V125A/F126L, F126L, Y132F, and K143R alleles.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 9 ( 2018-7-13)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Journal of Fungi Vol. 4, No. 3 ( 2018-09-01), p. 105-
    In: Journal of Fungi, MDPI AG, Vol. 4, No. 3 ( 2018-09-01), p. 105-
    Abstract: Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable “genetic escape”. Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Fungi, MDPI AG, Vol. 6, No. 3 ( 2020-08-21), p. 143-
    Abstract: Invasive infections caused by the opportunistic pathogen Candida glabrata are treated with echinocandin antifungals that target β-1,3-glucan synthase, an enzyme critical for fungal cell wall biosynthesis. Echinocandin resistance develops upon mutation of genes (FKS1 or FKS2) that encode the glucan synthase catalytic subunits. We have analyzed cellular factors that influence echinocandin susceptibility and here describe effects of the post-transcriptional regulator Ssd1, which in S. cerevisiae, can bind cell wall related gene transcripts. The SSD1 homolog in C. glabrata was disrupted in isogenic wild type and equivalent FKS1 and FKS2 mutant strains that demonstrate echinocandin resistance (MICs ˃ 0.5 µg/mL). A reversal of resistance (8- to 128-fold decrease in MICs) was observed in FKS1 mutants, but not in FKS2 mutants, following SSD1 deletion. Additionally, this phenotype was complemented upon expression of SSD1 from plasmid (pSSD1). All SSD1 disruptants displayed susceptibility to the calcineurin inhibitor FK506, similar to fks1∆. Decreases in relative gene expression ratios of FKS1 to FKS2 (2.6- to 4.5-fold) and in protein ratios of Fks1 to Fks2 (2.7- and 8.4-fold) were observed in FKS mutants upon SSD1 disruption. Additionally, a complementary increase in protein ratio was observed in the pSSD1 expressing strain. Overall, we describe a cellular factor that influences Fks1-specific mediated resistance and demonstrates further differential regulation of FKS1 and FKS2 in C. glabrata.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Fungi, MDPI AG, Vol. 10, No. 3 ( 2024-03-06), p. 201-
    Abstract: The authors wish to update the article title to “Cryo-Electron Tomography of Candida glabrata Plasma Membrane Proteins” [...]
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2016
    In:  Frontiers in Microbiology Vol. 7 ( 2016-12-15)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 7 ( 2016-12-15)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2016
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 61, No. 12 ( 2017-12)
    Abstract: Candida species are a part of the human microbiome and can cause systemic infection upon immune suppression. Candida glabrata infections are increasing and have greater rates of antifungal resistance than other species. Here, we present a C. glabrata gastrointestinal (GI) colonization model to explore whether colonized yeast exposed to caspofungin, an echinocandin antifungal, develop characteristic resistance mutations and, upon immunosuppression, breakthrough causing systemic infection. Daily therapeutic dosing (5 mg/kg of body weight) of caspofungin resulted in no reduction in fecal burdens, organ breakthrough rates similar to control groups, and resistance rates (0 to 10%) similar to those reported clinically. Treatment with 20 mg/kg caspofungin initially reduced burdens, but a rebound following 5 to 9 days of treatment was accompanied by high levels of resistance ( FKS1 / FKS2 mutants). Although breakthrough rates decreased in this group, the same FKS mutants were recovered from organs. In an attempt to negate drug tolerance that is critical for resistance development, we cotreated mice with daily caspofungin and the chitin synthase inhibitor nikkomycin Z. The largest reduction (3 log) in GI burdens was obtained within 3 to 5 days of 20 mg/kg caspofungin plus nikkomycin treatment. Yet, echinocandin resistance, characterized by a novel Fks1-L630R substitution, was identified following 5 to 7 days of treatment. Therapeutic caspofungin plus nikkomycin treatment left GI burdens unchanged but significantly reduced organ breakthrough rates (20%; P 〈 0.05). Single-dose pharmacokinetics demonstrated low levels of drug penetration into the GI lumen posttreatment with caspofungin. Overall, we show that C. glabrata echinocandin resistance can arise within the GI tract and that resistant mutants can readily disseminate upon immunosuppression.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 62, No. 6 ( 2018-06)
    Abstract: Candida glabrata infections are increasing worldwide and exhibit greater rates of antifungal resistance than those with other species. DNA mismatch repair (MMR) gene deletions, such as msh2Δ , in C. glabrata resulting in a mutator phenotype have recently been reported to facilitate rapid acquisition of antifungal resistance. This study determined the antifungal susceptibility profiles of 210 C. glabrata isolates in 10 hospitals in India and investigated the impact of novel MSH2 polymorphisms on mutation potential. No echinocandin- or azole-resistant strains and no mutations in FKS hot spot regions were detected among the C. glabrata isolates, supporting our in vitro susceptibility testing results. CLSI antifungal susceptibility data showed that the MICs of anidulafungin (geometric mean [GM], 0.12 μg/ml) and micafungin (GM, 0.01 μg/ml) were lower and below the susceptibility breakpoint compared to that of caspofungin (CAS) (GM, 1.31 μg/ml). Interestingly, 69% of the C. glabrata strains sequenced contained six nonsynonymous mutations in MSH2 , i.e., V239L and the novel mutations E459K, R847C, Q386K, T772S, and V239/D946E. Functional analysis of MSH2 mutations revealed that 49% of the tested strains (40/81) contained a partial loss-of-function MSH2 mutation. The novel MSH2 substitution Q386K produced higher frequencies of CAS-resistant colonies upon expression in the msh2Δ mutant. However, expression of two other novel MSH2 alleles, i.e., E459K or R847C, did not confer selection of resistant colonies, confirming that not all mutations in the MSH2 MMR pathway affect its function or generate a phenotype of resistance to antifungal drugs. The lack of drug resistance prevented any correlations from being drawn with respect to MSH2 genotype.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1496156-8
    detail.hit.zdb_id: 217602-6
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-6-30)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-6-30)
    Abstract: Fungal infections are on the rise, and emergence of drug-resistant Candida strains refractory to treatment is particularly alarming. Resistance to azole class antifungals, which have been extensively used worldwide for several decades, is so high in several prevalent fungal pathogens, that another drug class, the echinocandins, is now recommended as a first line antifungal treatment. However, resistance to echinocandins is also prominent, particularly in certain species, such as Candida glabrata . The echinocandins target 1,3-β-glucan synthase (GS), the enzyme responsible for producing 1,3-β-glucans, a major component of the fungal cell wall. Although echinocandins are considered fungicidal, C. glabrata exhibits echinocandin tolerance both in vitro and in vivo , where a subset of the cells survives and facilitates the emergence of echinocandin-resistant mutants, which are responsible for clinical failure. Despite this critical role of echinocandin tolerance, its mechanisms are still not well understood. Additionally, most studies of tolerance are conducted in vitro and are thus not able to recapitulate the fungal-host interaction. In this study, we focused on the role of cell wall integrity factors in echinocandin tolerance in C. glabrata. We identified three genes involved in the maintenance of cell wall integrity – YPS1 , YPK2 , and SLT2 – that promote echinocandin tolerance both in vitro and in a mouse model of gastrointestinal (GI) colonization. In particular, we show that mice colonized with strains carrying deletions of these genes were more effectively sterilized by daily caspofungin treatment relative to mice colonized with the wild-type parental strain. Furthermore, consistent with a role of tolerant cells serving as a reservoir for generating resistant mutations, a reduction in tolerance was associated with a reduction in the emergence of resistant strains. Finally, reduced susceptibility in these strains was due both to the well described FKS -dependent mechanisms and as yet unknown, FKS -independent mechanisms. Together, these results shed light on the importance of cell wall integrity maintenance in echinocandin tolerance and emergence of resistance and lay the foundation for future studies of the factors described herein.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...