GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (3)
  • He, Ting  (3)
Material
Publisher
  • Hindawi Limited  (3)
Language
Years
  • 1
    In: International Journal of Genomics, Hindawi Limited, Vol. 2013 ( 2013), p. 1-19
    Abstract: Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.
    Type of Medium: Online Resource
    ISSN: 2314-436X , 2314-4378
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2013
    detail.hit.zdb_id: 2711883-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Genomics, Hindawi Limited, Vol. 2018 ( 2018-06-20), p. 1-10
    Abstract: The excess use of nitrogen fertilizers causes many problems, including higher costs of crop production, lower nitrogen use efficiency, and environmental damage. Crop breeding for low-nitrogen tolerance, especially molecular breeding, has become the major route to solving these issues. Therefore, in crops such as barley ( Hordeum vulgare L.), it is crucial to understand the mechanisms of low-nitrogen tolerance at the molecule level. In the present study, two barley cultivars, BI-04 (tolerant to low nitrogen) and BI-45 (sensitive to low nitrogen), were used for gene expression analysis under low-nitrogen stress, including 10 genes related to primary nitrogen metabolism. The results showed that the expressions of HvNIA2 (nitrite reductase), HvGS2 (chloroplastic glutamine synthetase), and HvGLU2 (ferredoxin-dependent glutamate synthase) were only induced in shoots of BI-04 under low-nitrogen stress, HvGLU2 was also only induced in roots of BI-04, and HvGS2 showed a rapid response to low-nitrogen stress in the roots of BI-04. The expression of HvASN1 (asparagine synthetase) was reduced in both cultivars, but it showed a lower reduction in the shoots of BI-04. In addition, gene expression and regulation differences in the shoots and roots were also compared between the barley cultivars. Taken together, the results indicated that the four above-mentioned genes might play important roles in low-nitrogen tolerance in barley.
    Type of Medium: Online Resource
    ISSN: 2314-436X , 2314-4378
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2711883-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: BioMed Research International, Hindawi Limited, Vol. 2016 ( 2016), p. 1-8
    Abstract: To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...