GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1957-1957
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1957-1957
    Abstract: We have developed a transgenic zebrafish model that overexpresses MYCN and harbors loss-of-function mutations of the nf1 tumor suppressor. In this model, loss of nf1 leads to aberrant activation of RAS-MAPK signaling, promoting both increased tumor cell survival and rapid tumor cell proliferation. These neuroblastomas are very aggressive in that almost all of the fish develop neuroblastoma by 3 weeks of age. Three-week old juvenile fish are very small, making it feasible to test the effectiveness of many drugs and drug combinations in vivo for activity against the primary tumors. We demonstrate these advantages of the model by showing marked synergistic anti-tumor effects of a MEK inhibitor (trametinib) and a retinoid (isotretinoin) in vivo at several different dosage combinations by in vivo isobologram analysis. Thus, inhibition of RAS-MAPK signaling can significantly improve the treatment of this very aggressive form of neuroblastoma when it is combined with the inhibition of other key pathways. Because of the very high penetrance and rapid onset of neuroblastoma in our nf1-deficient, MYCN-transgenic zebrafish model, it is one of the only model systems in which extensive analysis of the synergistic activity of two or more drugs can be evaluated in primary tumors in vivo. This capability is especially valuable given that mutations causing RAS-MAPK pathway hyperactivation have been shown to arise frequently at the time of relapse of childhood neuroblastomas, indicating the need to eliminate these mutated tumor cells as a component of the primary treatment. Note: This abstract was not presented at the meeting. Citation Format: Shuning He, Marc R. Mansour, Mark W. Zimmerman, Hillary M. Layden, A. Thomas Look. Molecular pathogenesis and drug synergism in a zebrafish model of high risk neuroblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1957. doi:10.1158/1538-7445.AM2017-1957
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncogene, Springer Science and Business Media LLC, Vol. 40, No. 38 ( 2021-09-23), p. 5718-5729
    Abstract: Melanomas driven by loss of the NF1 tumor suppressor have a high risk of treatment failure and effective therapies have not been developed. Here we show that loss-of-function mutations of nf1 and pten result in aggressive melanomas in zebrafish, representing the first animal model of NF1-mutant melanomas harboring PTEN loss. MEK or PI3K inhibitors show little activity when given alone due to cross-talk between the pathways, and high toxicity when given together. The mTOR inhibitors, sirolimus, everolimus, and temsirolimus, were the most active single agents tested, potently induced tumor-suppressive autophagy, but not apoptosis. Because addition of the BCL2 inhibitor venetoclax resulted in compensatory upregulation of MCL1, we established a three-drug combination composed of sirolimus, venetoclax, and the MCL1 inhibitor S63845. This well-tolerated drug combination potently and synergistically induces apoptosis in both zebrafish and human NF1/PTEN-deficient melanoma cells, providing preclinical evidence justifying an early-stage clinical trial in patients with NF1/PTEN-deficient melanoma.
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: eLife, eLife Sciences Publications, Ltd, Vol. 5 ( 2016-04-27)
    Abstract: Neuroblastoma is one of the most common childhood cancers and is responsible for about 15% of childhood deaths due to cancer. The neuroblastoma tumors arise in cells that develop into and form part of the body’s nervous system. Many researchers have studied the genetics of this disease and have recognised common patterns. In particular, neuroblastomas can occur when a protein called MYCN is over-produced and a tumor suppressor protein called NF1 is lost. NF1 is a large protein with several distinct parts or domains. The most studied domain of NF1 is called the GRD, and it is mainly responsible for dampening down signals that cause cells to grow, specialize and survive. However, experiments in mice have revealed that this protein uses its other domains to control the normal development of part of the nervous system. He et al. wanted to know which domains of NF1 are important for suppressing the growth of neuroblastomas. The experiments were conducted in zebrafish that had been engineered to produce an excess of the human version of MYCN. When He et al. also deleted the gene for the zebrafish’s version of NF1, the fish quickly developed neuroblastomas. Supplying the zebrafish with just the GRD of NF1 was enough to supress the growth of the tumors. These experiments show that NF1 uses different domains and signalling pathways to regulate the normal development of part of the nervous system and to prevent formation of neuroblastoma. These engineered zebrafish represent an animal model of neuroblastoma that mimics the human disease in many ways. This model will make it possible to test new drug combinations and to find more effective treatments for neuroblastoma patients.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2016
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 801-801
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 801-801
    Abstract: Cutaneous melanoma is the most lethal type of skin cancer, with ~76,380 newly diagnosed melanoma and ~10,130 melanoma-associated deaths per year in the US. Thus, there is a need for improved understanding of the molecular pathogenesis and more effective targeted therapies for this devastating disease. The recent work of The Cancer Genome Atlas Network has defined melanoma as an RTK/RAS-driven solid tumor that can be classified into four genomic subtypes: BRAF-mutant, RAS-mutant, NF1-mutant, and triple-wild-type. This landmark study highlighted the important role of the previously understudied NF1 tumor suppressor in melanoma pathogenesis, especially for the 9% of melanoma patients who have acquired inactivating NF1-mutations, but lack hotspot mutations that activate BRAF or RAS. To date, animal models have not been developed for the NF1-mutant subtype of melanoma, which has significantly impaired the development of novel therapeutic strategies for this subtype. Here we report the first zebrafish model for NF1-mutant melanoma, which we generated by combining the loss of nf1 with loss of both pten and p53. The resultant compound mutant zebrafish develop aggressive melanomas from the age of 7 weeks and the tumor penetrance is 80% by the age of 18 weeks. We demonstrate further that these high-risk zebrafish melanomas were exclusive of hotspot mutations of braf and nras. Sustained inhibition of both MEK and PI3K suppressed tumor progression in vivo, whereas inhibition of MEK or PI3K alone was insufficient to suppress the growth of these tumors. Surprisingly, single agent therapy with rapamycin, an MTOR inhibitor, proved even better for short- and long-term suppression of tumor cell growth in nf1/pten-mutant melanomas. Thus our model appears ideal for the testing of drugs that will prove uniquely active for the significant subset of NF1-mutant, BRAF/NRAS-wildtype human melanomas. Citation Format: Shuning He, Marc R. Mansour, Hillary M. Layden, Scott J. Rodig, E. Elizabeth Patton, A. Thomas Look. A zebrafish model of NF1-mutant melanomas that lack activating mutations of BRAF or NRAS [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 801. doi:10.1158/1538-7445.AM2017-801
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 2456-2456
    Abstract: Earlier reports indicated that the role of Nf1 tumor suppressor gene in limiting sympathoadrenal cell growth during embryologic development is independent of its ability to down-modulate RAS-MAPK signaling. This finding raised the question of whether neuroblastoma pathogenesis was also accelerated by loss of a similar non-canonical function of NF1. To elucidate how loss of the NF1 tumor suppressor gene contributes to the development of high-risk neuroblastoma, we relied on a transgenic zebrafish model that overexpresses MYCN and harbors loss-of-function nf1 mutations. We show here that loss of nf1 leads to aberrant activation of RAS signaling in MYCN-induced neuroblastoma, promoting both increased tumor cell survival and rapid tumor cell proliferation. We demonstrate further that the GTPase-activating protein (GAP) activity of the (GAP)-related domain (GRD) is sufficient to suppress accelerated initiation of neuroblastoma in nf1-deficient zebrafish, even though this transgene is unable to restrict abnormal sympathoadrenal cell growth during embryologic development. Hence NF1 exhibits different activities in vivo in the normal development and tumorigenesis of the peripheral sympathetic nervous system. Our findings establish nf1-deficient zebrafish that overexpress MYCN as an ideal animal model system for investigating new strategies to improve treatment of very high risk neuroblastomas with aberrant RAS-MAPK activation. We are currently performing high-throughput in vivo drug analysis using these zebrafish with primary tumors. Citation Format: Shuning He, Marc R. Mansour, Mark W. Zimmerman, Dong Hyuk Ki, Hillary M. Layden, Koshi Akahane, Eric D. de Groh, Antonio R. Perez-Atayde, Shizhen Zhu, Jonathan A. Epstein, A Thomas Look. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2456.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...