GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOP Publishing  (2)
  • He, Shengping  (2)
Material
Publisher
  • IOP Publishing  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2021
    In:  Environmental Research Letters Vol. 16, No. 9 ( 2021-09-01), p. 094040-
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 9 ( 2021-09-01), p. 094040-
    Abstract: Extreme cold waves frequently occur in east of China that dramatically endanger ecological agriculture, power infrastructure and human life. In this study, we found that the ‘Warm Arctic-Cold Siberia’ pattern (WACS) significantly enhanced cold waves in east of China according to daily composites from 1979 to 2018. During the winter 2020/21, a record-breaking cold wave broke out following a noticeable WACS phenomenon and induced the record-low surface air temperature at 60 meteorological stations since they were established (nearly 60 years). On 3 January 2021, the difference in temperature anomaly between the Barents–Kara Sea and Siberia reached 20 °C, the peak of winter 2020/21. With a shrinking meridional temperature gradient, the atmospheric baroclinicity weakened correspondingly. The accompanying atmospheric anomalies, i.e. the persistent Ural Blocking High and Baikal deep trough effectively transported stronger cold air than the sole impact from Arctic warming. After 4 d, the east of China experienced a severe surface air temperature decrease of more than 8 °C, covering an area of 2500 000 km 2 . During the same winter, a record-breaking warm event occurred in February 2021, and the ‘Cold Arctic-Warm Eurasia’ pattern also appeared as a precursory signal. Furthermore, on the interannual scale, the connection between winter-mean temperature anomalies in east of China and the WACS pattern also existed and even performed more strongly in both observations and simulation data of CMIP6.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IOP Publishing ; 2022
    In:  Environmental Research Letters Vol. 17, No. 2 ( 2022-02-01), p. 024015-
    In: Environmental Research Letters, IOP Publishing, Vol. 17, No. 2 ( 2022-02-01), p. 024015-
    Abstract: Based on the ERA5-Land datasets from 1981–2020, a decadal oscillation has been found in the variation of summer runoff in the middle and lower reaches of the Yangtze River Basin (MLYRB). The oscillation suggests that the MLYRB will experience increased runoff in the next few decades after 2020, which saw a record high runoff in the MLYRB. The decadal changes in summer runoff over the MLYRB under various climate change scenarios are then analyzed with direct runoff outputs from 28 general circulation models participating in the sixth phase of the Coupled Model Intercomparison Project. Given that the equal-weighted multi-model ensemble mean could not well represent the historical runoff changes in the MLYRB, in this paper we introduce a model weighting scheme that considers both the model skill and independence. It turns out that this scheme well constrains the models to represent the observed decadal changes of summer runoff. The weighted mean projections suggest that the summer runoff in the MLYRB during 2015–2100 under all warming scenarios will be higher than the present day; and 2021–2040 is likely to be a period with significantly increased summer runoff. Results of the present study have great implications for flood control and effective water resources management over the MLYRB in the future, and the weighting approach used in this paper can be applied to a wide range of projections at both regional and global scales.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...