GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • He, Jiaxin  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 1
    In: Molecular Human Reproduction, Oxford University Press (OUP), Vol. 28, No. 6 ( 2022-05-27)
    Abstract: Meiosis is pivotal to gametogenesis and fertility. Meiotic recombination is a mandatory process that ensures faithful chromosome segregation and generates genetic diversity in gametes. Non-obstructive azoospermia (NOA) caused by meiotic arrest is a common cause of male infertility and has many genetic origins, including chromosome abnormalities, Y chromosome microdeletion and monogenic mutations. However, the genetic causes of the majority of NOA cases remain to be elucidated. Here, we report our findings of three Shortage in chiasmata 1 (SHOC1) bi-allelic variants in three NOA patients, of which two are homozygous for the same loss-of-function variant (c.231_232del: p.L78Sfs*9), and one is heterozygous for two different missense variants (c.1978G & gt;A: p.A660T; c.4274G & gt;A: p.R1425H). Testicular biopsy of one patient revealed impairment of spermatocyte maturation. Both germ-cell-specific and general Shoc1-knockout mice exhibited similar male infertility phenotypes. Subsequent analysis revealed comprehensive defects in homologous pairing and synapsis along with abnormal expression of DMC1, RAD51 and RPA2 in Shoc1-defective spermatocyte spreads. These findings imply that SHOC1 may have a presynaptic function during meiotic recombination apart from its previously identified role in crossover formation. Overall, our results provide strong evidence for the clinical relevance of SHOC1 mutations in patients with NOA and contribute to a deeper mechanistic understanding of the role of SHOC1 during meiotic recombination.
    Type of Medium: Online Resource
    ISSN: 1360-9947 , 1460-2407
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1497467-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Human Reproduction, Oxford University Press (OUP), Vol. 38, No. 7 ( 2023-07-05), p. 1399-1411
    Abstract: Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility. WHAT IS KNOWN ALREADY KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells. LIMITATIONS, REASONS FOR CAUTION The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to report a likely causal relationship between KCTD19 deficiency and male infertility, confirming the critical role of KCTD19 in human reproduction. Additionally, this study provided evidence for the poor ICSI clinical outcomes in individuals with biallelic KCTD19 variants, which may guide clinical treatment strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Developmental Program of China (2022YFC2702604 to Y.-Q.T.), the National Natural Science Foundation of China (81971447 and 82171608 to Y.-Q.T., 82101961 to C.T.), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y.-Q.T.), a Hunan Provincial Grant for Innovative Province Construction (2019SK4012), and the China Postdoctoral Science Foundation (2022M721124 to W.W.). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...