GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (7)
  • He, Bin  (7)
Material
Publisher
  • Optica Publishing Group  (7)
Language
Years
  • 1
    In: Optics Letters, Optica Publishing Group, Vol. 48, No. 15 ( 2023-08-01), p. 4025-
    Abstract: Stretched-pulse mode-locked (SPML) lasing based on a chirped fiber Bragg grating (CFBG) has proven to be a powerful method to generate wavelength-swept lasers at speeds of tens of megahertz. However, light transmitted through the CFBG may lead to undesirable laser oscillation that disrupts the mechanism of the laser active mode locking in the theta ring cavity. In this Letter, we demonstrate a simple and low-cost approach to suppress the transmitted light and achieve an effective duty cycle of ∼100% with only one CFBG and no need for intra-cavity semiconductor optical amplifier (SOA) modulation, extra-cavity optical buffering, and post amplification. By utilizing polarization isolation of the bi-directional CFBG, a swept laser centered at 1305 nm, with repetition rate of 10.3 MHz, optical power of 84 mW, and 3 dB bandwidth of 109 nm, is demonstrated. Ultrahigh speed 3D optical coherence tomography (OCT) structural imaging of a human palm in vivo using this swept laser is also demonstrated. We believe that this ultrahigh speed swept laser will greatly promote the OCT technique for industrial and biomedical applications.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2023
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Optics Letters, Optica Publishing Group, Vol. 44, No. 12 ( 2019-06-15), p. 2955-
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2019
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Express Vol. 29, No. 1 ( 2021-01-04), p. 305-
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 1 ( 2021-01-04), p. 305-
    Abstract: Data-processing techniques in spectroscopy are fundamental and powerful analytical tools for lots of practical applications. In the age of big data, high-speed data-processing in spectroscopy is in urgent need, especially for the real-time analysis/feedback of data stream of spectroscopy or the capture of non-repetitive/rare phenomena in fast dynamic process. So far, intensive researches focus on high-speed processing of light signal in time/spatial domain but few people find a way to do it in spectral domain. Here, we report an optical computing technology for high-speed optical spectrum processing with features of real time, multiple functions, all-fiber configuration and immunity to electromagnetic interference. The software-controlled system could perform as, but not limited to, the first-order (or arbitrary fractional-order) differentiator/integrator/Hilbert transformer and tunable band-pass filter, respectively, to handle spectral data rapidly. High-speed processing of optical spectrum at a rate of 10,000,000 times per second is demonstrated.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Express Vol. 29, No. 8 ( 2021-04-12), p. 12049-
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 8 ( 2021-04-12), p. 12049-
    Abstract: The existence of vector solitons that arise from the birefringence nature of optical fibers has been increasingly of interest for the stability of mode-locked fiber lasers, particularly for those operating in the high-fundamental-repetition-rate regime, where a large amount of fiber birefringence is required to restore the phase relation between the orthogonally polarized vector solitons, resulting in stable mode-locking free of polarization rotation. These vector solitons can exhibit diverse time-varying polarization dynamics, which prevent industrial and scientific applications requiring stable and uniform pulse trains at high fundamental repetition rates. This pressing issue, however, has so far been rarely studied. To this end, here we theoretically and experimentally dissect the formation of vector solitons in a GHz-repetition-rate fiber laser and investigate effective methods for suppressing roundtrip-to-roundtrip polarization dynamics. Our numerical model can predict both dynamic and stable regimes of high-repetition-rate mode-locking by varying the amount of fiber birefringence, resulting in the polarization rotation vector soliton (PRVS) and linearly polarized soliton (LPS), respectively. These dynamic behaviors are further studied by using an analytical approach. Interestingly, our theoretical results indicate a cavity-induced locking effect, which can be a complementary soliton trapping mechanism for the co-propagating solitons. Finally, these theoretical predications are experimentally verified, and we obtain both PRVS and LPS by adjusting the intracavity fiber birefringence.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Express Vol. 29, No. 8 ( 2021-04-12), p. 12024-
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 8 ( 2021-04-12), p. 12024-
    Abstract: Optical fibers have been widely applied to life science, such as laser delivering, fluorescence collection, biosensing, bioimaging, etc. To resolve the challenges of advanced multiphoton biophotonic applications utilizing ultrashort laser pulses, here we report a flexible diameter-oscillating fiber (DOF) with microlens endface fabricated by using Polydimethylsiloxane (PDMS) elastomers. The diameter of the DOF is designed to longitudinally vary for providing accurate dispersion management, which is important for near-infrared multiphoton biophotonics that usually involves ultrashort laser pulses. The variation range and period of the DOF’s diameter can be flexibly adjusted by controlling the parameters during the fabrication, such that dispersion curves with different oscillation landscapes can be obtained. The dispersion oscillating around the zero-dispersion baseline gives rise to a minimized net dispersion as the ultrashort laser pulse passes through the DOF — reducing the temporal broadening effect and resulting in transform-limited pulsewidth. In addition, the endface of the DOF is fabricated with a microlens, which is especially useful for laser scanning/focusing and fluorescence excitation. It is anticipated that this new biocompatible DOF is of great interest for biophotonic applications, particularly multiphoton microscopy deep inside biological tissues.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Optica Publishing Group ; 2016
    In:  Applied Optics Vol. 55, No. 25 ( 2016-09-01), p. 7149-
    In: Applied Optics, Optica Publishing Group, Vol. 55, No. 25 ( 2016-09-01), p. 7149-
    Type of Medium: Online Resource
    ISSN: 0003-6935 , 1539-4522
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2016
    detail.hit.zdb_id: 207387-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Optica Publishing Group ; 2020
    In:  Optics Express Vol. 28, No. 3 ( 2020-02-03), p. 4021-
    In: Optics Express, Optica Publishing Group, Vol. 28, No. 3 ( 2020-02-03), p. 4021-
    Abstract: Optical coherence tomography (OCT) has been an important and powerful tool for biological research and clinical applications. However, speckle noise significantly degrades the image quality of OCT and has a negative impact on the clinical diagnosis accuracy. In this paper, we propose a novel speckle noise suppression technique which changes the spatial distribution of sample beam using a special optical chopper. Then a series of OCT images with uncorrelated speckle patterns could be captured and compounded to improve the image quality without degradation of resolution. Typical signal-to-noise ratio improvement of ∼6.4 dB is experimentally achieved in tissue phantom imaging with average number n  = 100. Furthermore, compared with conventional OCT, the proposed technique is demonstrated to view finer and clearer biological structures in human skin in vivo , such as sweat glands and blood vessels. The advantages of low cost, simple structure and compact integration will benefit the future design of handheld or endoscopic probe for biomedical imaging in research and clinical applications.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2020
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...