GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SAGE Publications  (2)
  • Haydon, Rex C.  (2)
Material
Publisher
  • SAGE Publications  (2)
Language
Years
  • 1
    In: Cell Transplantation, SAGE Publications, Vol. 24, No. 6 ( 2015-06), p. 1053-1066
    Abstract: Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells, and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector-expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate, and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors, and to elucidate the molecular mechanisms underlying chondrogenesis.
    Type of Medium: Online Resource
    ISSN: 0963-6897 , 1555-3892
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2015
    detail.hit.zdb_id: 2020466-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Therapeutic Advances in Musculoskeletal Disease, SAGE Publications, Vol. 5, No. 1 ( 2013-02), p. 13-31
    Abstract: The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
    Type of Medium: Online Resource
    ISSN: 1759-720X , 1759-7218
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2013
    detail.hit.zdb_id: 2516075-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...