GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine Environmental Research, Elsevier BV, Vol. 158 ( 2020-06), p. 104953-
    Type of Medium: Online Resource
    ISSN: 0141-1136
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 437280-3
    detail.hit.zdb_id: 1502505-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecology and Evolution, Wiley, Vol. 9, No. 20 ( 2019-10), p. 11631-11646
    Abstract: Species are characterized by physiological and behavioral plasticity, which is part of their response to environmental shifts. Nonetheless, the collective response of ecological communities to environmental shifts cannot be predicted from the simple sum of individual species responses, since co‐existing species are deeply entangled in interaction networks, such as food webs. For these reasons, the relation between environmental forcing and the structure of food webs is an open problem in ecology. To this respect, one of the main problems in community ecology is defining the role each species plays in shaping community structure, such as by promoting the subdivision of food webs in modules—that is, aggregates composed of species that more frequently interact—which are reported as community stabilizers. In this study, we investigated the relationship between species roles and network modularity under environmental shifts in a highly resolved food web, that is, a “weighted” ecological network reproducing carbon flows among marine planktonic species. Measuring network properties and estimating weighted modularity, we show that species have distinct roles, which differentially affect modularity and mediate structural modifications, such as modules reconfiguration, induced by environmental shifts. Specifically, short‐term environmental changes impact the abundance of planktonic primary producers; this affects their consumers’ behavior and cascades into the overall rearrangement of trophic links. Food web re‐adjustments are both direct, through the rewiring of trophic‐interaction networks, and indirect, with the reconfiguration of trophic cascades. Through such “systemic behavior,” that is, the way the food web acts as a whole, defined by the interactions among its parts, the planktonic food web undergoes a substantial rewiring while keeping almost the same global flow to upper trophic levels, and energetic hierarchy is maintained despite environmental shifts. This behavior suggests the potentially high resilience of plankton networks, such as food webs, to dramatic environmental changes, such as those provoked by global change.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Ecology and Evolution Vol. 9 ( 2021-4-12)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 9 ( 2021-4-12)
    Abstract: The study of ecosystem services requires the integration of different observational points. This is particularly true in Water, as this element continuously cycles, increasing chances of interaction among services originating in different ecosystems. However, aquatic scientists historically approached the study of inland/freshwater and open/marine waters in different ways and this cultural division potentially hampers integrative approaches. Herein, we explored the literature pertaining to ecosystem services across the last 23 years, analysing 4,590 aquatic papers. By aggregating and intersecting topics included in this papers’ collection using text-mining and topical network approaches, we saw that the study of local environmental conditions (e.g., river estuary management) and synergies and trade-offs between services (e.g., carbon sequestration and water purification) can display several potential conceptual links between freshwater and marine sciences. Our analyses suggest that to intersect ecosystem services across the aquatic continuum, the conceptual integration between marine and freshwater science must be reinforced, especially at the interface between different “salinity realms.” Such integration should adopt a “system thinking” perspective, in which the focus is on multiple socio-ecological processes giving rise to interactions that are (i) biologically mediated, (ii) potentially conflicting, and (iii) entangled within networks.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Sustainability Vol. 11, No. 16 ( 2019-08-14), p. 4393-
    In: Sustainability, MDPI AG, Vol. 11, No. 16 ( 2019-08-14), p. 4393-
    Abstract: Integrated coastal management (ICM) relies on the inclusion of economic issues within marine ecology. To assess the progress of this integration, we applied topic modelling and network analysis to explore the pertinent literature (583 Isi-WoS, and 5459 Scopus papers). We classified the topics of interest (i.e., concepts, approaches, and sectors) that combined ecological and economic issues within marine science, we aggregated these topics in fields pertinent to ICM, and tracked the knowledge-exchange between these fields by using an information-flow network. Main findings were: (i) the high trans-disciplinary fashion of studies about marine protection and of those about commercial fisheries, (ii) the weak interaction between studies focusing on potential biohazards and those about environmental management, (iii) the isolation, in the overall information-flow, of studies about ecotourism and aquaculture. We included in a roadmap all the integration routes we detected within ICM, based on the combination of ecological and economic issues. We conclude that, to improve integration, ICM should: (i) Exploit marine protection as a bridge between ecological and economic concepts and approaches, and between maritime economy sectors, (ii) employ systems ecology to pursue trans-disciplinary investigations, (iii) complement systems ecology with citizen science by means of inclusive economic initiatives, such as ecotourism.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...