GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • Harada, Miyuki  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 1
    In: Molecular Human Reproduction, Oxford University Press (OUP), Vol. 25, No. 11 ( 2019-11-30), p. 684-694
    Abstract: Advanced glycation end products (AGEs) affect the follicular microenvironment. The close relationship between AGEs, proinflammatory cytokine production and activation of the unfolded protein response (UPR), which involves activating transcription factor 4 (ATF4), is crucial for regulation of various cellular functions. We examined whether accumulation of AGEs in follicles was associated with proinflammatory cytokine production and activation of the UPR in granulosa cells and decreased oocyte developmental competence. Concentrations of AGEs, soluble receptor for AGE (sRAGE), interleukin (IL)-6 and IL-8 in follicular fluid (FF) were examined by ELISAs in 50 follicles. mRNA expression of ATF4, IL-6 and IL-8 in cumulus cells (CCs) were examined by quantitative RT-PCR in 77 samples. Cultured human granulosa-lutein cells (GLCs) were treated with AGE-bovine serum albumin (BSA) alone or following transfection of ATF4-targeting small interfering RNA. The AGE concentration and the AGE/sRAGE ratio in FF were significantly higher in follicles containing oocytes that developed into poor-morphology embryos (group I) than those with good-morphology embryos (group II). When compared with sibling follicles from the same patients, the AGE/sRAGE and concentrations of IL-6 and IL-8 in FF, as well as ATF4, IL-6 and IL-8 mRNA expression in CCs, were significantly higher in group I follicles than group II. AGE treatment increased mRNA expression of ATF4, IL-6 and IL-8 in cultured GLCs. Knockdown of ATF4 abrogated the stimulatory effects of AGE on mRNA expression and protein secretion of IL-6 and IL-8. Our findings support the idea that accumulation of AGEs in follicles reduces oocyte competence by triggering inflammation via activation of ATF4 in the follicular microenvironment.
    Type of Medium: Online Resource
    ISSN: 1460-2407
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1497467-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Human Reproduction, Oxford University Press (OUP), Vol. 26, No. 1 ( 2020-01-01), p. 40-52
    Abstract: Endometriosis exerts detrimental effects on ovarian physiology and compromises follicular health. Granulosa cells from patients with endometriosis are characterized by increased apoptosis, as well as high oxidative stress. Endoplasmic reticulum (ER) stress, a local factor closely associated with oxidative stress, has emerged as a critical regulator of ovarian function. We hypothesized that ER stress is activated by high oxidative stress in granulosa cells in ovaries with endometrioma and that this mediates oxidative stress–induced apoptosis. Human granulosa-lutein cells (GLCs) from patients with endometrioma expressed high levels of mRNAs associated with the unfolded protein response (UPR). In addition, the levels of phosphorylated ER stress sensor proteins, inositol-requiring enzyme 1 (IRE1) and double-stranded RNA-activated protein kinase-like ER kinase (PERK), were elevated in granulosa cells from patients with endometrioma. Given that ER stress results in phosphorylation of ER stress sensor proteins and induces UPR factors, these findings indicate that these cells were under ER stress. H2O2, an inducer of oxidative stress, increased expression of UPR-associated mRNAs in cultured human GLCs, and this effect was abrogated by pretreatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor in clinical use. Treatment with H2O2 increased apoptosis and the activity of the pro-apoptotic factors caspase-8 and caspase-3, both of which were attenuated by TUDCA. Our findings suggest that activated ER stress induced by high oxidative stress in granulosa cells in ovaries with endometrioma mediates apoptosis of these cells, leading to ovarian dysfunction in patients with endometriosis.
    Type of Medium: Online Resource
    ISSN: 1460-2407
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1497467-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...