GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Systems Biology, EMBO, Vol. 15, No. 3 ( 2019-03)
    Type of Medium: Online Resource
    ISSN: 1744-4292 , 1744-4292
    Language: English
    Publisher: EMBO
    Publication Date: 2019
    detail.hit.zdb_id: 2193510-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 17, No. 1_Supplement ( 2018-01-01), p. A188-A188
    Abstract: Synthetic lethality (SL) describes an interaction between a pair of genes whereby their double knockout is lethal, while their respective knockout is not. The identification of SL interactions (SLi) via large-scale genomic screens offers promising opportunities for developing selective therapies in cancer. However, our analysis of the TCGA cohort shows that many of the interactions do not carry predictive signal of patient survival or drug response. Here we present a data-driven approach termed ISLE (Identification of clinically relevant Synthetic LEthality) that mines the TCGA cohort to identify a subset of clinically relevant SL interactions (cSLi). ISLE consists of the following inference steps, analysis of tumor, cell line, and gene evolutionary data. We first create an initial pool of SL pairs identified through direct double knockout screens/isogenic cell line screens or inferred from large-scale shRNA/sgRNA single-gene knockout screens. Starting from this initial SL pool, ISLE first identifies putative SL gene pairs whose co-inactivation is under-represented in tumors, testifying that it is selected against. Second, it prioritizes candidate SL pairs whose co-inactivation is associated with improved patient’s prognosis, testifying that it may hamper tumor progression. Finally, it prioritizes SL-gene pairs with similar evolutionary phylogenetic profiles based on the notion that SL interactions are conserved across multiple species. We validate the identified SL pairs using an unseen large-scale in vitro drug response screen by showing the SL pairs marks a decent prediction accuracy (AUC~0.8). We compare ISLE’s performance to the standard supervised drug response prediction approaches in DREAM challenges, and our prediction based on generic pretreatment tumor samples (from TCGA) was within top 3 in prediction accuracy among the top predictors. ISLE-based approach also successfully distinguishes responders vs nonresponders to drug treatment (for & gt;70% of drugs) in mouse xenografts using the activity profile of the drug target’s SL-partners. We then experimentally show the utility of SL in predicting synergistic drug combinations in patient-derived cell lines based on the notion that the two drugs whose targets have SL interactions are synergistic. Most importantly, we demonstrate for the first time that an SL network can successfully predict the treatment outcome in cancer patients in multiple large-scale patient datasets including TCGA, where cSLi are successfully predict patients’ response for more than 70% of cancer drugs. ISLE is predictive of patients’ response for the majority of current cancer drugs without any drug-specific training. Of paramount importance, the predictions of ISLE are based on SLi between (potentially) all genes in the cancer genome, thus prioritizing treatments for patients whose tumors do not bear specific actionable mutations in cancer driver genes, offering a novel approach to precision-based cancer therapy. Citation Format: Joo S. Lee, Avinash Das, Livnat Jerby-Arnon, Rand Arafeh, Matthew Davidson, Arnaud Amzallag, Seung Gu Park, Kuoyuan Cheng, Welles Robinson, Dikla Atias, Chani Stossel, Ella Buzhor, Gidi Stein, Joshua J. Waterfall, Paul S. Meltzer, Talia Golan, Sridhar Hannenhalli, Eyal Gottlieb, Cyril H. Benes, Yardena Samuels, Emma Shanks, Eytan Ruppin. Harnessing synthetic lethality to predict the response to cancer treatments [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2017 Oct 26-30; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Ther 2018;17(1 Suppl):Abstract nr A188.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-06-29)
    Abstract: While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL candidates found via experimental screens often have limited translational value. Here we present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality), that mines TCGA cohort to identify the most likely clinically relevant SL interactions (cSLi) from a given candidate set of lab-screened SLi. We first validate ISLE via a benchmark of large-scale drug response screens and by predicting drug efficacy in mouse xenograft models. We then experimentally test a select set of predicted cSLi via new screening experiments, validating their predicted context-specific sensitivity in hypoxic vs normoxic conditions and demonstrating cSLi’s utility in predicting synergistic drug combinations. We show that cSLi can successfully predict patients’ drug treatment response and provide patient stratification signatures. ISLE thus complements existing actionable mutation-based methods for precision cancer therapy, offering an opportunity to expand its scope to the whole genome.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-01-08)
    Abstract: Idiopathic dilated cardiomyopathy (DCM) is a complex disorder with a genetic and an environmental component involving multiple genes, many of which are yet to be discovered. We integrate genetic, epigenetic, transcriptomic, phenotypic, and evolutionary features into a method – Hridaya , to infer putative functional genes underlying DCM in a genome-wide fashion, using 213 human heart genomes and transcriptomes. Many genes identified by Hridaya are experimentally shown to cause cardiac complications. We validate the top predicted genes, via five different genome-wide analyses: First, the predicted genes are associated with cardiovascular functions. Second, their knockdowns in mice induce cardiac abnormalities. Third, their inhibition by drugs cause cardiac side effects in human. Fourth, they tend to have differential exon usage between DCM and normal samples. Fifth, analyzing 213 individual genotypes, we show that regulatory polymorphisms of the predicted genes are associated with elevated risk of cardiomyopathy. The stratification of DCM patients based on cardiac expression of the functional genes reveals two subgroups differing in key cardiac phenotypes. Integrating predicted functional genes with cardiomyocyte drug treatment experiments reveals novel potential drug targets. We provide a list of investigational drugs that target the newly identified functional genes that may lead to cardiac side effects.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 543-543
    Abstract: Significance: The identification of Synthetic Lethal interactions (SLi) has long been considered a foundation for the advancement of cancer treatment. The rapidly accumulating large-scale patient data now provides a golden opportunity to infer SLi directly from patient samples. Here we present a new data-driven approach termed ISLE for identifying SLi, which is then shown to be predictive of clinical outcomes of cancer treatment in an unsupervised manner, for the first time. Methods: ISLE consists of four inference steps, analyzing tumor, cell line and gene evolutionary data: It first identifies putative SL gene pairs whose co-inactivation is underrepresented in tumors, testifying that they are selected against. Second, it further prioritizes candidate SL pairs whose co-inactivation is associated with better prognosis in patients, testifying that they may hamper tumor progression. Finally, it eliminates false positive SLi using gene essentiality screens (testifying to causal SLi relations) and prioritizing SLi paired genes with similar evolutionary phylogenetic profiles. Results: We applied ISLE to analyze the TCGA tumor collection and generated the first clinically-derived pan-cancer SL-network, composed of SLi common across many cancer types. We validated that these SLi match the known, experimentally identified SLi (AUC=0.87), and show that the SL-network is predictive of patient survival in an independent breast cancer dataset (METABRIC). Based on the predicted SLi, we predicted drug response of single agents and drug combinations in a wide variety of in vitro, mouse xenograft and patient data, altogether encompassing & gt;700 single drugs and & gt;5,000 drug combinations in & gt;1,000 cell lines, 375 xenograft models and & gt;5,000 patient samples. Of note, these predictions were performed in an unsupervised manner, reducing the known risk of over-fitting the data commonly associated with supervised prediction methods. Our prediction is based on the notion that a drug is likely to be more effective in tumors where many of its targets’ SL-partners are inactive, and drug synergism may be mediated by underlying SLi between their targets. Most importantly, we demonstrate for the first time that an SL-network can successfully predict the treatment outcome in cancer patients in multiple large-scale patient datasets including the TCGA, where SLis successfully predict patients’ response for 75% of cancer drugs. Conclusions: ISLE is predictive of the patients’ response for the majority of current cancer drugs. Of paramount importance, the predictions of ISLE are based on SLi between (potentially) all genes in the cancer genome, thus prioritizing treatments for patients whose tumors do not bear specific actionable mutations in cancer driver genes, offering a novel approach to precision-based cancer therapy. The predictive performance of ISLE is likely to further improve with the expected rapid accumulation of additional patient data. Citation Format: Joo Sang Lee, Avinash Das, Livnat Jerby-Arnon, Seung Gu Park, Matthew Davidson, Dikla Atias, Arnaud Amzallag, Chani Stossel, Ella Buzhor, Welles Robinson, Kuoyuan Cheng, Joshua J. Waterfall, Paul S. Meltzer, Sridhar Hannenhalli, Cyril H. Benes, Talia Golan, Emma Shanks, Eytan Ruppin. Harnessing synthetic lethality to predict clinical outcomes of cancer treatment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 543. doi:10.1158/1538-7445.AM2017-543
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...