GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
  • Hancock, Robert E. W.  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Person/Organisation
Language
Years
  • 1
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 183, No. 1 ( 2001-01), p. 367-374
    Abstract: The outer membrane protein OprM of Pseudomonas aeruginosa is involved in intrinsic and mutational multiple-antibiotic resistance as part of two resistance-nodulation-division efflux systems. The crystal structure of TolC, a homologous protein in Escherichia coli , was recently published (V. Koronakis, A. Sharff, E. Koronakis, B. Luisl, and C. Hughes, Nature 405:914–919, 2000), demonstrating a distinctive architecture comprising outer membrane β-barrel and periplasmic helical-barrel structures, which assemble differently from the common β-barrel-only conformation of porins. Based on their sequence similarity, a similar content of α-helical and β-sheet structure determined by circular dichroism spectroscopy, and our observation that OprM, like TolC, reconstitutes channels in planar bilayer membranes, OprM and TolC were considered to be structurally homologous, and a model of OprM was constructed by threading its sequence to the TolC crystal structure. Residues thought to be important for the TolC structure were conserved in space in this OprM model. Analyses of deletion mutants and previously isolated insertion mutants of OprM in the context of this model allowed us to propose roles for different protein domains. Our data indicate that the helical barrel of the protein is critical for both the function and the integrity of the protein, while a C-terminal domain localized around the equatorial plane of this helical barrel is dispensable. Extracellular loops appear to play a lesser role in substrate specificity for this efflux protein compared to classical porins, and there appears to be a correlation between the change in antimicrobial activity for OprM mutants and the pore size. Our model and channel formation studies support the “iris” mechanism of action for TolC and permit us now to form more focused hypotheses about the functional domains of OprM and its related family of efflux proteins.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Bacteriology Vol. 189, No. 3 ( 2007-02), p. 929-939
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 189, No. 3 ( 2007-02), p. 929-939
    Abstract: The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porins, OpdH, has been implicated in the uptake of cis -aconitate. Here we demonstrate that this porin may also enable P. aeruginosa to take up other tricarboxylates. Isocitrate and citrate strongly and specifically induced the opdH gene via a mechanism involving derepression by the putative two-component regulatory system PA0756-PA0757. Planar bilayer analysis of purified OpdH demonstrated that it was a channel-forming protein with a large single-channel conductance (230 pS in 1 M KCl; 10-fold higher than that of OprD); however, we were unable to demonstrate the presence of a tricarboxylate binding site within the channel. Thus, these data suggest that the requirement for OpdH for efficient growth on tricarboxylates was likely due to the specific expression of this large-channel porin under particular growth conditions.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...