GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2023
    In:  Acta Physica Sinica Vol. 72, No. 5 ( 2023), p. 058802-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 5 ( 2023), p. 058802-
    Abstract: Driven by global demand for new energy, Li-ion batteries (LIBs) have developed rapidly due to their competitive performance. Although LIBs show the advantages of high capacity and good cycling stability, their disadvantages such as uneven distribution of lithium resources are gradually exposed. Therefore, with abundant reserves, Na-ion batteries (NIB) have become one of the most promising solutions to make up for the deficiency of Li-ion battery. The NIBs layered oxide cathodes have the most potential applications of cathode material due to their high specific capacity (167 mAh·g〈sup〉–1〈/sup〉 in 2.4–4.3 V) and simple synthesis method. However, improving the cycling stability of layered cathode materials is one of the keys to their large-scale industrialization. To develop high capacity and cycling stability cathode materials, the Mg〈sup〉2+〈/sup〉 is substituted for Ni〈sup〉2+〈/sup〉 in NaNi〈sub〉0.4〈/sub〉Cu〈sub〉0.1〈/sub〉Mn〈sub〉0.4〈/sub〉Ti〈sub〉0.1〈/sub〉O〈sub〉2〈/sub〉 (NCMT), thereby obtaining a NaNi〈sub〉0.35〈/sub〉Mg〈sub〉0.05〈/sub〉Cu〈sub〉0.1〈/sub〉Mn〈sub〉0.4〈/sub〉Ti〈sub〉0.1〈/sub〉O〈sub〉2〈/sub〉 (NCMT-Mg) cathode material. The NCMT-Mg has a high reversible specific capacity of 165 mAh·g〈sup〉–1〈/sup〉 in a voltage window of 2.4–4.3 V. The reversible specific capacity of about 110 mAh·g〈sup〉–1〈/sup〉 at 0.1 C after 350 cycles with a capacity retention of 67.3% is about 13% higher than the counterpart of NCMT. The irreversible reaction is suppressed from P'3 phase to X phase for NCMT. The ex-XRD spectrometers further prove that the NCMT-Mg shows a P3 and X mixed phase after being initially charged to 4.3 V, but the NCMT shows an X phase. The irreversible phase transition is suppressed to increase the cycling stability. The inactive Mg〈sup〉2+〈/sup〉 replaces Ni〈sup〉2+〈/sup〉, reducing the charge compensation and stabilizing the structure, the inactive Mg〈sup〉2+〈/sup〉 can activate the charge compensation of Ni〈sup〉2+〈/sup〉/Cu〈sup〉2+〈/sup〉. The electrochemical activity increases from 77% to 86%. The high capacity and excellent cycling stability prove that the NCMT-Mg structure remains intact after various current rates have been tested. The long cycling stability mechanism is further systematically studied by using various technologies. The present work will provide an important reference for developing high-performance Na-ion cathode materials.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 7 ( 2023), p. 070702-
    Abstract: Aqueous alkali-metal-ion batteries are a popular frontier research area, expected to apply for large-scale energy storage due to their high safety, low cost, and environmental friendliness. Depending on diversified social development, batteries ought to function in various ambient, including polar regions and high-altitude locales. Delivering excellent electrochemical performance at low temperatures is crucial to develop aqueous alkali-metal-ion batteries. This review summarizes the representative research progress in the field of aqueous low-temperature alkali-metal-ion batteries in recent years, based on the subjects of electrolyte, electrode, and interface. Firstly, we discussed the challenges of aqueous alkali-metal-ion batteries operated at low temperatures and the corresponding failure mechanisms. At subzero temperatures, aqueous alkali-metal-ion batteries couldn't work or exhibit little capacity, arising from the frozen electrolytes, electrode materials with slow kinetics, and huge interface impedances, which seriously limits their wide application in low-temperature conditions. Then, combined with the latest research work, various strategies have been investigated to improve the electrochemical performance of batteries at low temperatures. To date, the strategies for reducing the freezing point of electrolytes have primarily focused on breaking H-bonds between free water molecules by increasing salt concentration, adding organic/inorganic additives, and using hydrogel as electrolytes. In terms of electrodes, the related studies have concentrated on regulating the structure and morphology of electrodes, introducing the dual ion battery mechanism, and using organic materials and Zn electrodes to alleviate the slow ion dynamics of electrodes. In addition, adding appropriate organic solvents that can generate protective layers with low interface impedance on the electrode surface in the electrolyte can also improve the low-temperature performance of aqueous alkali-metal-ion batteries. Finally, we evaluated multi-dimensionally all strategies, expected to provide a comprehensive reference and point out the direction for the further improvement and practical application of the aqueous alkali-metal-ion batteries at low temperatures.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...