GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Han, Chuanyin  (1)
  • Biology  (1)
  • Medicine  (1)
Material
Publisher
Language
Years
Subjects(RVK)
  • Biology  (1)
  • Medicine  (1)
RVK
  • 1
    In: Journal of General Virology, Microbiology Society, Vol. 95, No. 11 ( 2014-11-01), p. 2565-2575
    Abstract: We isolated and characterized a novel virulent bacteriophage, IME-EFm1, specifically infecting multidrug-resistant Enterococcus faecium . IME-EFm1 is morphologically similar to members of the family Siphoviridae . It was found capable of lysing a wide range of our E. faecium collections, including two strains resistant to vancomycin. One-step growth tests revealed the host lysis activity of phage IME-EFm1, with a latent time of 30 min and a large burst size of 116 p.f.u. per cell. These biological characteristics suggested that IME-EFm1 has the potential to be used as a therapeutic agent. The complete genome of IME-EFm1 was 42 597 bp, and was linear, with terminally non-redundant dsDNA and a G+C content of 35.2 mol%. The termini of the phage genome were determined with next-generation sequencing and were further confirmed by nuclease digestion analysis. To our knowledge, this is the first report of a complete genome sequence of a bacteriophage infecting E. faecium . IME-EFm1 exhibited a low similarity to other phages in terms of genome organization and structural protein amino acid sequences. The coding region corresponded to 90.7 % of the genome; 70 putative ORFs were deduced and, of these, 29 could be functionally identified based on their homology to previously characterized proteins. A predicted metallo-β-lactamase gene was detected in the genome sequence. The identification of an antibiotic resistance gene emphasizes the necessity for complete genome sequencing of a phage to ensure it is free of any undesirable genes before use as a therapeutic agent against bacterial pathogens.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2014
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...