GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 139, No. 8 ( 2022-02-24), p. 1184-1197
    Abstract: Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X–like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL] ). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 139, No. 5 ( 2022-02-03), p. 690-703
    Abstract: The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix+ mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 553, No. 7687 ( 2018-1), p. 238-238
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Cancer, Springer Science and Business Media LLC
    Abstract: The PDCD1 -encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1 -mutated T-NHL and identify PD-1 as regulator of AP-1 activity.
    Type of Medium: Online Resource
    ISSN: 2662-1347
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 3005299-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3888-3888
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3888-3888
    Abstract: Malignant cells evolve adaptive mechanisms to survive metabolic stress to drive progression. We previously described the stress sensor MondoA as promoting malignancy of common acute lymphoblastic leukemia (cALL). MondoA knockdown (MKD) in cALL cell lines xenografted into mice reduced the number of leukemic blasts compared to control cells (Sipol 2014). Next we investigated potential mechanisms of MondoA mediated malignancy. Microarray analyses of MKD cALL lines revealed an induction of glycolytic and hypoxia response associated gene sets. To validate and expand these results we generated cALL lines with MondoA knockout (MKO) via CRISPR/cas9 gene editing. Colony forming assays and direct cell counting demonstrated reduced proliferation of MKO cells under normoxic conditions compared to controls. However, under hypoxia, there was a diminished MondoA dependent growth advantage. This suggests that MondoA proficient cells may have a selective growth advantage in the presence of oxygen, and that MondoA might confer the ability to utilize oxidative phosphorylation and thus increase metabolic activity. We therefore measured mitochondrial respiration by determining oxygen consumption rates (OCR) in control and MKO cells using an extracellular flux analyzer. Surprisingly, MKO cells displayed a higher basal OCR as well as significantly increased extracellular acidification rate (ECAR) and glycolysis. This suggested that MondoA might actually limit oxidative phosphorylation and glycolysis in response to glucose. We therefore hypothesized that MondoA might remodel cALL metabolism towards an alternative energy source. Indeed, Kegg pathway analysis of microarray data showed upregulation of fatty acid synthesis (FAS) and fatty acid oxidation (FAO) genes by MondoA. This suggested that MondoA might facilitate sustained fatty acid metabolism to maintain high proliferative rates. Key regulators of citrate to oleate conversion, fatty acid elongation and cholesterol synthesis (ACLY, ELOVL5, ELOVL6, ELOVL1, FASN, HMGCR, HMGCS1) were stimulated by MondoA. Colorimetric assays demonstrated decreased NADPH and Acetyl-CoA levels corresponding to disregulated fatty acid metabolism by MKO. In addition, ROS measurements by electron paramagnetic resonance (EPR) using the spin trap CMH in the presence or absence of NADPH oxidase NOX2 inhibitory peptide gp91ds-Tat, a readout of NOX activity, demonstrated that MKO cells increase cytoplasmic ROS production, mediated by NOX2. Moreover, MondoA depleted leukemia cells generate more ROS in glutamine-restricted media. In summary, (1) MondoA increases leukemic cell proliferation under both normoxia and hypoxia; (2) MondoA increases metabolic activity, in particular fatty acid metabolism; and (3) MondoA decreases cytoplasmic ROS production in glutamine-deprived conditions. We conclude that MondoA has multiple functions in supporting malignancy of cALL, most likely by increasing fatty acid metabolism while simultaneously providing adaptation to oxidative stress. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 552, No. 7683 ( 2017-12-07), p. 121-125
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. B51-B51
    Abstract: MondoA (also known as MLXIP, MAX-like protein X interacting protein) is a metabolic stress sensor and a proglycolytic transcription factor potentially involved in metabolic addiction features of leukemia and the Warburg effect. MondoA dimerizes with MLX within the MYC interactome and promotes longevity in C. elegans (Johnson et al., 2014). The MYC interactome comprises the MYC/MAX/MNT/MLX/MLXIP transcription factor network: Its key players MYC, MNT and MLXIP differentially mediate proliferation, differentiation, or metabolism by heterodimerization with MAX or MLX. We previously described MondoA to promote malignancy of common precursor B-cell acute lymphoblastic leukemia (cALL). MondoA knockdown (MKD) in cALL cell lines in xenografted mice reduced the number of leukemic blasts (Sipol, 2014). Here we report that MondoA high expression was observed in ALL subtypes with no MYC overexpression. RNA-sequencing data of 132 primary ALL bone marrow samples confirmed the inverse correlation of MYC and MondoA. Interestingly, in subgroups of ALL with low MYC expression and high MondoA (cALL with BCR-ABL, cALL with TCF3-PBX, cALL with ETV6-RUNX1, and cALL with hyperdiploid karyotype), metabolic gene sets did not appear as upregulated. In contrast, cALL samples with high MYC expression and low MondoA (proB-ALL with MLL rearrangements and B-ALL with IGH-MYC fusion gene) demonstrated upregulation of pathways for oxidative phosphorylation and fatty acid metabolism in addition to targets of E2F, G2M checkpoints, and MYC targets. Using CRISPR/CAS9-mediated knockout (MKO), we demonstrate that MondoA dials down MYC-induced metabolic stress and increases leukemia stress resistance. By limiting mitochondrial pyruvate dehydrogenase (PDH) activity in PDHK1 (pyruvate dehydrogenase kinase 1)-dependent manner, MondoA decreases oxidative phosphorylation. In line with limiting effect of MondoA on oxidative phosphorylation, we observed that MondoA decreases ROS generation in B cells. In conclusion, MondoA is restricting MYC-target gene expression to promote leukemia cell survival by facilitating glycolysis and adaption to oxidative stress. MondoA limits pyruvate availability for the TCA cycle by decreasing PDH activity, thus ensuring consistent glycolytic flux, mediating the Warburg effect, and insuring integrity of leukemia metabolism and ROS balancing in response to oncogene activation. Citation Format: Alexandra Sipol, Erik Hameister, Andreas Petry, Agnes Görlach, Jürgen Ruland, Guenther Richter, Stefan Burdach, Poul Sorensen. Adaptation to oncogene-induced metabolic stress by MondoA (MLXIP) drives common acute lymphoblastic leukemia (cALL) malignancy [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B51.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 6, No. 65 ( 2021-11-26)
    Abstract: Psoriasis is a chronic inflammatory skin disease arising from poorly defined pathological cross-talk between keratinocytes and the immune system. BCL10 (B cell lymphoma/leukemia 10) and MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) are ubiquitously expressed inflammatory signaling proteins that can interact with the psoriasis susceptibility factor CARD14, but their functions in psoriasis are insufficiently understood. We report that although keratinocyte-intrinsic BCL10/MALT1 deletions completely rescue inflammatory skin pathology triggered by germline Card14 gain-of-function mutation in mice, the BCL10/MALT1 signalosome is unexpectedly not involved in the CARD14-dependent interleukin-17 receptor (IL-17R) proximal pathway. Instead, it plays a more pleiotropic role by amplifying keratinocyte responses to a series of inflammatory cytokines, including IL-17A, IL-1β, and TNF. Moreover, selective keratinocyte-intrinsic activation of BCL10/MALT1 signaling with an artificial engager molecule is sufficient to initiate lymphocyte-mediated psoriasiform skin inflammation, and aberrant BCL10/MALT1 activity is frequently detected in the skin of human sporadic psoriasis. Together, these results establish that BCL10/MALT1 signalosomes can act as initiators and crucial amplifiers of psoriatic skin inflammation and indicate a critical function for this complex in sporadic psoriasis.
    Type of Medium: Online Resource
    ISSN: 2470-9468
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: eJHaem, Wiley, Vol. 2, No. 2 ( 2021-05), p. 280-284
    Abstract: Allogeneic hematopoietic stem cell transplantations (HSCTs) represent a curative strategy for treating hematologic malignancies yet bear dangerous and frequently life‐threatening complications including the development of graft‐versus‐host disease. Here, we present a case of a patient that suffered from relapsed/refractory multiple myeloma, a hematologic neoplasm characterized by clonal proliferation of malignant plasma cells in the bone marrow. During the course of his disease, the patient underwent consecutive allogeneic HSCTs, during which he developed a clinical meaningful and hitherto unreported ABO subgroup incompatibility, leading to persistent hemolysis. Testing for ABO subgroups during donor selection, especially after consecutive allogeneic HSCTs, may therefore aid to prevent these complications.
    Type of Medium: Online Resource
    ISSN: 2688-6146 , 2688-6146
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 3021452-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...