GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Haghighi, Babak  (3)
  • Shinohara, Russell T.  (3)
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-03-16)
    Abstract: Radiomic features have a wide range of clinical applications, but variability due to image acquisition factors can affect their performance. The harmonization tool ComBat is a promising solution but is limited by inability to harmonize multimodal distributions, unknown imaging parameters, and multiple imaging parameters. In this study, we propose two methods for addressing these limitations. We propose a sequential method that allows for harmonization of radiomic features by multiple imaging parameters (Nested ComBat). We also employ a Gaussian Mixture Model (GMM)-based method (GMM ComBat) where scans are split into groupings based on the shape of the distribution used for harmonization as a batch effect and subsequent harmonization by a known imaging parameter. These two methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography datasets. We found that Nested ComBat exhibited similar performance to standard ComBat in reducing the percentage of features with statistically significant differences in distribution attributable to imaging parameters. GMM ComBat improved harmonization performance over standard ComBat (− 11%, − 10% for Lung3/CAPTK, Lung3/PyRadiomics harmonizing by kernel resolution). Features harmonized with a variant of the Nested method and the GMM split method demonstrated similar c-statistics and Kaplan–Meier curves when used in survival analyses.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Reports Vol. 12, No. 1 ( 2022-11-08)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-08)
    Abstract: Radiomic approaches in precision medicine are promising, but variation associated with image acquisition factors can result in severe biases and low generalizability. Multicenter datasets used in these studies are often heterogeneous in multiple imaging parameters and/or have missing information, resulting in multimodal radiomic feature distributions. ComBat is a promising harmonization tool, but it only harmonizes by single/known variables and assumes standardized input data are normally distributed. We propose a procedure that sequentially harmonizes for multiple batch effects in an optimized order, called OPNested ComBat. Furthermore, we propose to address bimodality by employing a Gaussian Mixture Model (GMM) grouping considered as either a batch variable (OPNested + GMM) or as a protected clinical covariate (OPNested − GMM). Methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography (CT) datasets. We found that OPNested ComBat improved harmonization performance over standard ComBat. OPNested + GMM ComBat exhibited the best harmonization performance but the lowest predictive performance, while OPNested − GMM ComBat showed poorer harmonization performance, but the highest predictive performance. Our findings emphasize that improved harmonization performance is no guarantee of improved predictive performance, and that these methods show promise for superior standardization of datasets heterogeneous in multiple or unknown imaging parameters and greater generalizability.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 661-661
    Abstract: Background: Tumoral molecular characterization and genomic analysis is required for appropriate choice of therapy, requiring tumor biopsies which are invasive and associated with life-threatening complications. Standard of care computed tomography (CT) acquired during lung cancer management has a yet untapped wealth of information on in situ tumor architecture, heterogeneity and peritumoral environment which have prognostic implications. Previously published literature on overall survival (OS) prediction in stage III non-small cell lung cancer (NSCLC) on CT are limited by use of heterogeneous tumor histology, therapy, imaging technique and imaging scanner type, all of which can impact radiomic features and hence potentially obscure a discernible predictive radiomic signature. To address these challenges, we 1) used a well-curated cohort of stage III NSCLC patients, 2) developed radiomic phenotypes predictive of OS, and 3) accounted for differences across image acquisition modalities and vendors. Methods: We retrospectively analyzed 110 thoracic CT scans (82 non-contrast, 28 contrast enhanced; from three vendors) from stage III lung adenocarcinoma patients (68 female, 42 male) acquired between April 2012−October 2018, with median age of 66 (range 60−71) years, and 56 identified events of death. Isotropic interpolation (3mm) was implemented to account for variations in image spatial resolution. Tumor segmentations were performed by one of three experienced radiologists using itk-SNAP. A set of 107 radiomic features subdivided into first order statistics, shape-based and textural, were extracted for each tumor using the Pyradiomics package. Radiomic features with different distributions across vendors were identified and discarded using the Kruskal-Wallis test. Harmonization of radiomic features based on radiocontrast agents was performed using ComBat batch effect correction. Radiomic phenotypes were derived through unsupervised hierarchical clustering of the main principal components of the radiomic features. A baseline Cox model based on the established tumor volume and ECOG status was built and compared with a model integrating such clinical covariates with the radiomic phenotypes using C-statistics. Results: The OS predictive performance of the Cox model integrating radiomic phenotypes and clinical covariates had C-index = 0.68, (95%) CI = [0.61,0.76], an improvement since the baseline model alone had C-index = 0.65, CI = [0.58,0.73] . Radiomic phenotypes derived from non-harmonized features did not add value to the predictive performance of the baseline model. Conclusions: Accounting for differences related to image acquisition, vendors and radiocontrast agents through feature harmonization, can substantially improve the predictive performance of well-known clinical covariates using standard CT used in NSCLC management. Citation Format: Jose M. Luna, Andrew R. Barsky, Russell T. Shinohara, Alexandra D. Dreyfuss, Hannah Horng, Leonid Roshkovan, Michelle Hershman, Babak Haghighi, Peter B. Noel, Keith A. Cengel, Sharyn I. Katz, Eric S. Diffenderfer, Despina Kontos. Robust feature selection and ComBat-based harmonization to improve survival prediction in stage III lung cancer using radiomic phenotypes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 661.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...