GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Haag, W.  (5)
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2004
    In:  Annales Geophysicae Vol. 22, No. 3 ( 2004-03-19), p. 705-715
    In: Annales Geophysicae, Copernicus GmbH, Vol. 22, No. 3 ( 2004-03-19), p. 705-715
    Abstract: Abstract. Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI) under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003), clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous)
    Type of Medium: Online Resource
    ISSN: 1432-0576
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2004
    detail.hit.zdb_id: 1458425-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2003
    In:  Atmospheric Chemistry and Physics Vol. 3, No. 1 ( 2003-02-20), p. 195-210
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 3, No. 1 ( 2003-02-20), p. 195-210
    Abstract: Abstract. The homogeneous freezing of supercooled H2SO4/H2O aerosols in an aerosol chamber is investigated with a microphysical box model using the activity parameterization of the nucleation rate by Koop et al. (2000). The simulations are constrained by measurements of pressure, temperature, total water mixing ratio, and the initial aerosol size distribution, described in a companion paper Möhler et al. (2003). Model results are compared to measurements conducted in the temperature range between 194 and 235 K, with cooling rates in the range between 0.5 and 2.6 K min-1, and at air pressures between 170 and 1000 hPa. The simulations focus on the time history of relative humidity with respect to ice, aerosol size distribution, partitioning of water between gas and particle phase, onset times of freezing, freezing threshold relative humidities, aerosol chemical composition at the onset of freezing, and the number of nucleated ice crystals. The latter four parameters can be inferred from the experiments, the former three aid in interpreting the measurements. Sensitivity studies are carried out to address the relative importance of uncertainties of basic quantities such as temperature, total H2O mixing ratio, aerosol size spectrum, and deposition coefficient of H2O molecules on ice. The ability of the numerical simulations to provide detailed explanations of the observations greatly increases confidence in attempts to model this process under real atmospheric conditions, for instance with regard to the formation of cirrus clouds or polar stratospheric ice clouds, provided that accurate temperature and humidity measurements are available.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2003
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 3, No. 1 ( 2003-02-20), p. 211-223
    Abstract: Abstract. The homogeneous freezing of supercooled H2SO4/H2O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1 µm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.9 and 0.95. Cloud cooling rates up to -2.8 K min-1 were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K  to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2003
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 3, No. 5 ( 2003-10-27), p. 1807-1816
    Abstract: Abstract. Based on in-situ observations performed during the Interhemispheric differences in cirrus properties from anthropogenic emissions (INCA) experiment, we introduce and discuss the cloud presence fraction (CPF) defined as the ratio between the number of data points determined to represent cloud at a given ambient relative humidity over ice (RHI) divided by the total number of data points at that value of RHI. The CPFs are measured with four different cloud probes. Within similar ranges of detected particle sizes and concentrations, it is shown that different cloud probes yield results that are in good agreement with each other. The CPFs taken at Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes differ from each other. Above ice saturation, clouds occurred more frequently during the NH campaign. Local minima in the CPF as a function of RHI are interpreted as a systematic underestimation of cloud presence when cloud particles become invisible to cloud probes. Based on this interpretation, we find that clouds during the SH campaign formed preferentially at RHIs between 140 and 155%, whereas clouds in the NH campaign formed at RHIs somewhat below 130%. The data show that interstitial aerosol and ice particles coexist down to RHIs of 70-90%, demonstrating that the ability to distinguish between different particle types in cirrus conditions depends on the sensors used to probe the aerosol/cirrus system. Observed distributions of cloud water content differ only slightly between the NH and SH campaigns and seem to be only weakly, if at all, affected by the freezing aerosols.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2003
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2003
    In:  Atmospheric Chemistry and Physics Vol. 3, No. 5 ( 2003-10-27), p. 1791-1806
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 3, No. 5 ( 2003-10-27), p. 1791-1806
    Abstract: Abstract. Factors controlling the microphysical link between distributions of relative humidity above ice saturation in the upper troposphere and lowermost stratosphere and cirrus clouds are examined with the help of microphysical trajectory simulations. Our findings are related to results from aircraft measurements and global model studies. We suggest that the relative humidities at which ice crystals form in the atmosphere can be inferred from in situ measurements of water vapor and temperature close to, but outside of, cirrus clouds. The comparison with concomitant measurements performed inside cirrus clouds provides a clue to freezing mechanisms active in cirrus. The analysis of field data taken at northern and southern midlatitudes in fall 2000 reveals distinct differences in cirrus cloud freezing thresholds. Homogeneous freezing is found to be the most likely mechanism by which cirrus form at southern hemisphere midlatitudes. The results provide evidence for the existence of heterogeneous freezing in cirrus in parts of the polluted northern hemisphere, but do not suggest that cirrus clouds in this region form exclusively on heterogeneous ice nuclei, thereby emphasizing the crucial importance of homogeneous freezing. The key features of distributions of upper tropospheric relative humidity simulated by a global climate model are shown to be in general agreement with both, microphysical simulations and field observations, delineating a feasible method to include and validate ice supersaturation in other large-scale atmospheric models, in particular chemistry-transport and weather forecast models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2003
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...