GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gupta, Aman  (5)
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Advances in Modeling Earth Systems Vol. 11, No. 9 ( 2019-09), p. 2862-2867
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 11, No. 9 ( 2019-09), p. 2862-2867
    Abstract: The atmospheric circulation response to global warming is both a challenge to predict and to understand Models of idealized atmospheres allow a process‐oriented investigation of the circulation response A growing number of models of simpler atmospheres are being developed and shared
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of the Atmospheric Sciences ( 2021-09-07)
    In: Journal of the Atmospheric Sciences, American Meteorological Society, ( 2021-09-07)
    Abstract: Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation vs. comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealised tracer, the age-of-air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3-d model to the tropical leaky pipe framework of Neu and Plumb (1999). Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Journal of Geophysical Research: Atmospheres Vol. 128, No. 4 ( 2023-02-27)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 128, No. 4 ( 2023-02-27)
    Abstract: The isentropic formulation of the leaky pipe stratospheric transport model (Linz et al., 2021, https://doi.org/10.1029/2021JD035199) is used to estimate midlatitude mixing fluxes A new metric, which quantifies the meridional range of air parcels being mixed across transport barriers, is proposed to estimate mixing The deep tropical stratosphere mixes with the extratropics in the upper stratosphere, but is otherwise remarkably isolated
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Journal of Geophysical Research: Atmospheres Vol. 126, No. 21 ( 2021-11-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 126, No. 21 ( 2021-11-16)
    Abstract: A new metric for adiabatic mixing in the stratosphere is developed from the age of air tracer We examine hemispheric asymmetry and discuss the slow time evolution of the flow We calculate this metric to perform a preliminary comparison between models and satellite data
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 146, No. 733 ( 2020-10), p. 3937-3964
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 146, No. 733 ( 2020-10), p. 3937-3964
    Abstract: The transport of trace gases by the atmospheric circulation plays an important role in the climate system and its response to external forcing. Transport presents a challenge for Atmospheric General Circulation Models (AGCMs), as errors in both the resolved circulation and the numerical representation of transport processes can bias their abundance. In this study, two tests are proposed to assess transport by the dynamical core of an AGCM. To separate transport from chemistry, the tests focus on the age‐of‐air, an estimate of the mean transport time by the circulation. The tests assess the coupled stratosphere–troposphere system, focusing on transport by the overturning circulation and isentropic mixing in the stratosphere, or Brewer–Dobson Circulation, where transport time‐scales on the order of months to years provide a challenging test of model numerics. Four dynamical cores employing different numerical schemes (finite‐volume, pseudo‐spectral, and spectral‐element) and discretizations (cubed sphere versus latitude–longitude) are compared across a range of resolutions. The subtle momentum balance of the tropical stratosphere is sensitive to model numerics, and the first intercomparison reveals stark differences in tropical stratospheric winds, particularly at high vertical resolution: some cores develop westerly jets and others easterly jets. This leads to substantial spread in transport, biasing the age‐of‐air by up to 25% relative to its climatological mean, making it difficult to assess the impact of the numerical representation of transport processes. This uncertainty is removed by constraining the tropical winds in the second intercomparison test, in a manner akin to specifying the Quasi‐Biennial Oscillation in an AGCM. The dynamical cores exhibit qualitative agreement on the structure of atmospheric transport in the second test, with evidence of convergence as the horizontal and vertical resolution is increased in a given model. Significant quantitative differences remain, however, particularly between models employing spectral versus finite‐volume numerics, even in state‐of‐the‐art cores.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...