GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Guo, Yulong  (2)
  • Sadd, Ben M.  (2)
  • 1
    In: mBio, American Society for Microbiology
    Abstract: Wild insect pollinators provide many key ecosystem services, and the microbes associated with these insect pollinators may influence their health. Therefore, understanding the diversity in microbiota structure and function, along with the potential mechanisms shaping the microbiota across diverse insect pollinators, is critical. Our study expands beyond existing knowledge of well-studied social bees, like honey bees, including members from other bee, wasp, butterfly, and fly pollinators. We infer ecological and evolutionary factors that may influence microbiome structure across diverse insect pollinator hosts and the functions that microbiota members may play. We highlight significant differentiation of microbiomes among diverse pollinators. Closer analysis suggests that dominant members may show varying levels of host association and functions, even in a comparison of closely related microbes found in bees and flies. This work suggests varied importance of ecological, physiological, and non-evolutionary filters in determining structure and function across largely divergent wild insect pollinator microbiomes.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mSystems, American Society for Microbiology, Vol. 4, No. 6 ( 2019-12-17)
    Abstract: Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis . We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella , Snodgrassella , and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus , Lactococcus , and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...