GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (2)
  • Guo, Yu-Xiang  (2)
  • 2020-2024  (2)
Material
Publisher
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (2)
Language
Years
  • 2020-2024  (2)
Year
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 8 ( 2023), p. 085202-
    Abstract: Plasma simulation is important in studying the plasma discharge systematically, especially the anode layer ion source which has the complex geometrical characteristics of the discharge structure. However, owing to the complex solution domain formed by the geometric profile of the anode and cathode, the traditional simulation models show extremely small computational efficiency and poor convergence. This work presents a separate simulation for the ion source structure and the plasma discharge, separately, where the cathode geometric parameters (including the size, the shape and the relative position of the inner and outer cathodes) are simplified into two magnetic mirror parameters (the magnetic mirror ratio 〈i〉R〈/i〉〈sub〉m〈/sub〉 and the magnetic induction intensity in the center of the magnetic mirror 〈i〉 〈b〉B〈/b〉 〈/i〉〈sub〉0〈/sub〉), and then a high-efficient particle-in-cell/Monte Carlo collision (PIC/MCC) model is established to improve the computational efficiency and stability of the plasma simulation later. As a result, the convergence time of the plasma simulation is shortened significantly from 1.00 μs to 0.45 μs, and by which the influences of the geometrical characteristics of the discharge structure on the plasma properties are systematically studied. The simulation results reveal that magnetic mirror with 〈i〉R〈/i〉〈sub〉m〈/sub〉 = 2.50 and 〈i〉 〈b〉B〈/b〉 〈/i〉〈sub〉0〈/sub〉 = 36 mT can best confine the plasma in the central area between the inner cathode and outer cathode. When the discharge center of the plasmacoincides with the magnetic mirror center, the anode layer ion source presents both high density output of ion beam current and significantly reduced cathode etching, suggesting that the best balance is obtained between the output and cathode etching.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2022
    In:  Acta Physica Sinica Vol. 71, No. 5 ( 2022), p. 055203-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 5 ( 2022), p. 055203-
    Abstract: Closed magnetic field constructed by unbalanced magnetron sputtering (MS) cathodes has been a general means of developing the MS coating system. However, owing to the difficulties in characterizing the complex plasma behaviors, there are still no quantitative criteria or design bases for some critical points, such as the effective object, the working mechanism, the closure condition, the layout logic and the effectivity of the closed magnetic field. Here in this work, out of the movements of charged particles in magnetic field, the motion behaviors of electrons and ions in the vacuum chamber are studied and it is also revealed that the closed magnetic field can affect mainly the electrons and further control the distributions of ions. A Monte-Carlo collision (MCC) model of the closed magnetic field MS coating system is established by test-electron to characterize the plasma transport characteristics, and the electron constraint and coating deposition efficiency are studied by different layouts of the magnetron cathodes and the ion sources. The simulation results show that the cathode numbers and vacuum chamber size determine the constraint effect on electrons in closed magnetic field. By 8 MS cathodes and the chamber radius of 0.5 m, the proportion of the overflow electrons can decrease to 1.77%. To increase the proportion of the electrons in the coating region, four coupled magnetic fields are introduced in the center of vacuum chamber. The studies of cathode type, rotation angle and magnetic field direction reveal that the proportion of the overflow electrons is less than 3%. A local dense plasma distribution and a continuous uniform plasma distribution can be observed in the vacuum chamber, corresponding to the same and opposite layout in magnetic poles of the MS cathodes and the ion sources, and the proportion of the electrons in the coating region significantly increases to 53.41% and 42.25%, respectively.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...