GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (1)
  • Guo, Linlin  (1)
  • Zahner, Gunther  (1)
Material
Publisher
  • American Physiological Society  (1)
Person/Organisation
Language
Years
  • 1
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 311, No. 5 ( 2016-11-01), p. F1005-F1014
    Abstract: Acute kidney injury (AKI) is associated with poor patient outcome and a global burden for end-stage renal disease. Ischemia-reperfusion injury (IRI) is one of the major causes of AKI, and experimental work has revealed many details of the inflammatory response in the kidney, such as activation of the NF-κB pathway. Here, we investigated whether deletion of the NF-κB kinases IKK2 or NEMO in lymphocytes or systemic inhibition of IKK2 would cause different kidney inflammatory responses after IRI induction. Serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score were significantly increased in CD4 cre IKK2 f/f (CD4xIKK2 Δ ) and CD4 cre NEMO f/f (CD4xNEMO Δ ) mice compared with CD4cre mice after IRI induction. The frequency of Th17 cells infiltrating the kidneys of CD4xIKK2 Δ or CD4xNEMO Δ mice was also significantly increased at all time points. CCL20, an important chemokine in Th17 cell recruitment, was significantly increased at early time points after the induction of IRI. IL-1β, TNF-α, and CCL2 were also significantly increased in different patterns. A specific IKK2 inhibitor, KINK-1, reduced BUN and serum creatinine compared with nontreated mice after IRI induction, but the frequency of kidney Th17 cells was also significantly increased. In conclusion, although systemic IKK2 inhibition improved kidney function, lymphocyte-specific deletion of IKK2 or NEMO aggravated kidney injury after IRI, and, in both conditions, the percentage of Th17 cells was increased. Our findings demonstrate the critical role of the NF-κB pathway in Th17 activation, which advises caution when using systemic IKK2 inhibitors in patients with kidney injury, since they might impair the T cell response and aggravate renal disease.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2016
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...