GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Gu, Fan  (1)
  • Wang, Shun  (1)
Materialart
Verlag/Herausgeber
Person/Organisation
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Royal Society of Chemistry (RSC) ; 2021
    In:  Journal of Materials Chemistry A Vol. 9, No. 35 ( 2021), p. 19734-19740
    In: Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), Vol. 9, No. 35 ( 2021), p. 19734-19740
    Kurzfassung: The ability to craft high-performance and cost-effective bifunctional oxygen catalysts opens up pivotal perspectives for commercialization of zinc–air batteries (ZABs). Despite recent grand advances in the development of synthetic techniques, the overall performance of electrocatalytic processes enters the bottleneck stage through focusing only on the design and modification of bifunctional catalyst materials. Herein, we report a simple yet robust strategy to markedly boost the performance of ZABs via capitalizing on the photothermal effect. Concretely, a bifunctional electrocatalyst comprising Co 3 O 4 nanoparticles encapsulated within N-doped reduced graphene oxide (denoted as Co 3 O 4 /N-rGO) acted as both active material and photothermal component. Upon light illumination, the compelling photothermal effect of Co 3 O 4 /N-rGO rendered a localized and instant heating of the electrode with more active sites, enhanced electrical conductivity and improved release of bubbles. As such, a prominently reduced indicator Δ E of 0.635 V was realized, significantly outperforming recently reported systems (usually 〉 0.68 V). Corresponding rechargeable ZABs based on Co 3 O 4 /N-rGO air electrodes possessed an excellent maximum power density of 299 mW cm −2 (1.8 times that of Pt/Ru-based ZABs) assisted by the photothermal effect with a superb cycling stability (over 500 cycles). This intensification strategy opens vast possibilities to ameliorate the performance of catalysts via innovatively and conveniently utilizing their photothermal feature, which may advance future application in high-performance ZABs and other energy conversion and storage systems.
    Materialart: Online-Ressource
    ISSN: 2050-7488 , 2050-7496
    Sprache: Englisch
    Verlag: Royal Society of Chemistry (RSC)
    Publikationsdatum: 2021
    ZDB Id: 2702232-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...