GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 20, No. 1 ( 2010-01), p. 68-80
    Abstract: Cancer progression in humans is difficult to infer because we do not routinely sample patients at multiple stages of their disease. However, heterogeneous breast tumors provide a unique opportunity to study human tumor progression because they still contain evidence of early and intermediate subpopulations in the form of the phylogenetic relationships. We have developed a method we call Sector-Ploidy-Profiling (SPP) to study the clonal composition of breast tumors. SPP involves macro-dissecting tumors, flow-sorting genomic subpopulations by DNA content, and profiling genomes using comparative genomic hybridization (CGH). Breast carcinomas display two classes of genomic structural variation: (1) monogenomic and (2) polygenomic. Monogenomic tumors appear to contain a single major clonal subpopulation with a highly stable chromosome structure. Polygenomic tumors contain multiple clonal tumor subpopulations, which may occupy the same sectors, or separate anatomic locations. In polygenomic tumors, we show that heterogeneity can be ascribed to a few clonal subpopulations, rather than a series of gradual intermediates. By comparing multiple subpopulations from different anatomic locations, we have inferred pathways of cancer progression and the organization of tumor growth.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2010
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 113, No. 6 ( 2009-02-05), p. 1294-1303
    Abstract: We examined copy number changes in the genomes of B cells from 58 patients with chronic lymphocytic leukemia (CLL) by using representational oligonucleotide microarray analysis (ROMA), a form of comparative genomic hybridization (CGH), at a resolution exceeding previously published studies. We observed at least 1 genomic lesion in each CLL sample and considerable variation in the number of abnormalities from case to case. Virtually all abnormalities previously reported also were observed here, most of which were indeed highly recurrent. We observed the boundaries of known events with greater clarity and identified previously undescribed lesions, some of which were recurrent. We profiled the genomes of CLL cells separated by the surface marker CD38 and found evidence of distinct subclones of CLL within the same patient. We discuss the potential applications of high-resolution CGH analysis in a clinical setting.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 2058-2058
    Abstract: Although we have some understanding of the genetic abnormalities occurring in B-cell chronic lymphocytic leukemia (CLL) and their association with clinical outcomes, there is an incomplete comprehension of all of the mutations contributing to disease development and progression. In most abnormalities previously observed, it has been difficult to pinpoint specific candidate genes, reflecting the inadequacy of present tools for assessing chromosomal damage. We examined copy number changes in the genomes of B cells from 58 patients with CLL using a 390,000-probe microarray, enabling us to perform comparative genomic hybridization (CGH), at a resolution exceeding previously published studies. We observed at least one genomic lesion in each CLL sample and considerable variation in the number of abnormalities from case to case. Virtually all abnormalities previously reported were also observed, most of which were highly recurrent. We observed the boundaries of known events with greater clarity and identified lesions previously not described, some of which were also recurrent. A newly identified 3.6 Mb deletion at 8p21.2-p12 includes the gene TRIM 35. A second novel deletion at 2q37.1 (587kb) encompasses the gene SP100/110/140. Of the refined regions, a 249kb region at 9p21.3 spanning the CDKN2A (p16-INK4) and a 156kb region at 18q23 containing NFATC1 are particularly interesting. In the case of NFATC1, the minimal region of overlap spans that single gene. Furthermore, we tilized our arrays to examine the clonal heterogeneity of CLL within the same patient from mixed sub-populations. The presence of greater than 30% of B-cells with the CD38 cell surface marker has been associated with poor outcome in CLL. It is an open question whether this reflects genetic heterogeneity and possibly clonal evolution. To investigate this possibility, we analyzed CD38+ and CD38− fractions from individual patients and demonstrated that three out of the four patients examined had undergone clonal diversification leading to new subclones of appreciable size. Additionally, we have utilized a 2.1 million probe ultra-high density (HD2) array from NimbleGen (Madison, WI), providing us with the capability to scan the human genome for copy number changes at a resolution of a probe every 1500 bp. Utilizing the HD2 array, we are presently re-analyzing all the CLL samples in our study, and in the process are discovering many more previously unpublished lesions, several of which pinpoint single genes. We will present the results of our findings and discuss the potential applications of high resolution CGH analysis in a clinical setting.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 19 ( 2006-10-01), p. 2437-2438
    Abstract: PROBER is an oligonucleotide primer design software application that designs multiple primer pairs for generating PCR probes useful for fluorescence in situ hybridization (FISH). PROBER generates Tiling Oligonucleotide Probes (TOPs) by masking repetitive genomic sequences and delineating essentially unique regions that can be amplified to yield small (100–2000 bp) DNA probes that in aggregate will generate a single, strong fluorescent signal for regions as small as a single gene. TOPs are an alternative to bacterial artificial chromosomes (BACs) that are commonly used for FISH but may be unstable, unavailable, chimeric, or non-specific to small (10–100 kb) genomic regions. PROBER can be applied to any genomic locus, with the limitation that the locus must contain at least 10 kb of essentially unique blocks. To test the software, we designed a number of probes for genomic amplifications and hemizygous deletions that were initially detected by Representational Oligonucleotide Microarray Analysis of breast cancer tumors. Availability:   Contact:  navin@cshl.edu
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2006
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...