GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 499, No. 1 ( 2020-10-07), p. 193-209
    Abstract: The spatial distribution of metals reflects, and can be used to constrain, the processes of chemical enrichment and mixing. Using PHANGS-MUSE optical integral field spectroscopy, we measure the gas-phase oxygen abundances (metallicities) across 7138 H ii regions in a sample of eight nearby disc galaxies. In Paper I, we measure and report linear radial gradients in the metallicities of each galaxy, and qualitatively searched for azimuthal abundance variations. Here, we examine the 2D variation in abundances once the radial gradient is subtracted, Δ(O/H), in order to quantify the homogeneity of the metal distribution and to measure the mixing scale over which H ii region metallicities are correlated. We observe low (0.03–0.05 dex) scatter in Δ(O/H) globally in all galaxies, with significantly lower (0.02–0.03 dex) scatter on small ( & lt;600 pc) spatial scales. This is consistent with the measurement uncertainties, and implies the 2D metallicity distribution is highly correlated on scales of ≲600 pc. We compute the two-point correlation function for metals in the disc in order to quantify the scale lengths associated with the observed homogeneity. This mixing scale is observed to correlate better with the local gas velocity dispersion (of both cold and ionized gas) than with the star formation rate. Selecting only H ii regions with enhanced abundances relative to a linear radial gradient, we do not observe increased homogeneity on small scales. This suggests that the observed homogeneity is driven by the mixing introducing material from large scales rather than by pollution from recent and on-going star formation.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 1 ( 2023-01-28), p. 63-88
    Abstract: A long-standing problem when deriving the physical properties of stellar populations is the degeneracy between age, reddening, and metallicity. When a single metallicity is used for all the star clusters in a galaxy, this degeneracy can result in ‘catastrophic’ errors for old globular clusters. Typically, approximately 10–20 per cent of all clusters detected in spiral galaxies can have ages that are incorrect by a factor of 10 or more. In this paper, we present a pilot study for four galaxies (NGC 628, NGC 1433, NGC 1365, and NGC 3351) from the PHANGS-HST survey. We describe methods to correct the age-dating for old globular clusters, by first identifying candidates using their colours, and then reassigning ages and reddening based on a lower metallicity solution. We find that young ‘Interlopers’ can be identified from their Hα flux. CO (2-1) intensity or the presence of dust can also be used, but our tests show that they do not work as well. Improvements in the success fraction are possible at the ≈15 per cent level (reducing the fraction of catastrophic age-estimates from between 13 and 21 per cent, to between 3  and 8 per cent). A large fraction of the incorrectly age-dated globular clusters are systematically given ages around 100 Myr, polluting the younger populations as well. Incorrectly age-dated globular clusters significantly impact the observed cluster age distribution in NGC 628, which affects the physical interpretation of cluster disruption in this galaxy. For NGC 1365, we also demonstrate how to fix a second major age-dating problem, where very dusty young clusters with E(B − V) & gt; 1.5 mag are assigned old, globular-cluster like ages. Finally, we note the discovery of a dense population of ≈300 Myr clusters around the central region of NGC 1365 and discuss how this results naturally from the dynamics in a barred galaxy.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A191-
    Abstract: We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4  〈  log( M ⋆ / M ⊙ ) 〈 11.0) nearby ( D  ≲ 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1′ by 1′ each) and a total of nearly 15 × 10 6 spectra, covering ∼1.5 × 10 6 independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This ‘cloud-scale’ resolution allows detailed demographics and characterisations of H  II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2–1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H  II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L17-
    Abstract: The PHANGS collaboration has been building a reference data set for the multiscale, multiphase study of star formation and the interstellar medium (ISM) in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds (∼5–50 pc). In Cycle 1, PHANGS is conducting an eight-band imaging survey from 2 to 21 μ m of 19 nearby spiral galaxies. Optical integral field spectroscopy, CO(2–1) mapping, and UV-optical imaging for all 19 galaxies have been obtained through large programs with ALMA, VLT-MUSE, and Hubble. PHANGS–JWST enables a full inventory of star formation, accurate measurement of the mass and age of star clusters, identification of the youngest embedded stellar populations, and characterization of the physical state of small dust grains. When combined with Hubble catalogs of ∼10,000 star clusters, MUSE spectroscopic mapping of ∼20,000 H ii regions, and ∼12,000 ALMA-identified molecular clouds, it becomes possible to measure the timescales and efficiencies of the earliest phases of star formation and feedback, build an empirical model of the dependence of small dust grain properties on local ISM conditions, and test our understanding of how dust-reprocessed starlight traces star formation activity, all across a diversity of galactic environments. Here we describe the PHANGS–JWST Treasury survey, present the remarkable imaging obtained in the first few months of science operations, and provide context for the initial results presented in the first series of PHANGS–JWST publications.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 258, No. 1 ( 2022-01-01), p. 10-
    Abstract: The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 522, No. 2 ( 2023-04-21), p. 2369-2383
    Abstract: Connecting the gas in H ii regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H ii regions evolve over time. With PHANGS–MUSE, we detect nearly 24 000 H ii regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS–HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H ii regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the $\mathrm{H}\, \alpha$ equivalent width $\mathrm{EW}(\mathrm{H}\, \alpha)$, the $\mathrm{H}\, \alpha/\mathrm{FUV}$ flux ratio, and the ionization parameter, log q. As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, $\mathrm{EW}(\mathrm{H}\, \alpha)$ and log q show the most consistent trends and appear to be most reliable tracers for the age of an H ii region.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-02), p. A188-
    Abstract: We use an unprecedented sample of about 23 000 H  II regions detected at an average physical resolution of 67 pc in the PHANGS–MUSE sample to study the extragalactic H  II region H α luminosity function (LF). Our observations probe the star-forming disk of 19 nearby spiral galaxies with low inclination and located close to the star formation main sequence at z  = 0. The mean LF slope, α , in our sample is =1.73 with a σ of 0.15. We find that α decreases with the galaxy’s star formation rate surface density, Σ SFR , and argue that this is driven by an enhanced clustering of young stars at high gas surface densities. Looking at the H  II regions within single galaxies, we find that no significant variations occur between the LF of the inner and outer part of the star-forming disk, whereas the LF in the spiral arm areas is shallower than in the inter-arm areas for six out of the 13 galaxies with clearly visible spiral arms. We attribute these variations to the spiral arms increasing the molecular clouds’ arm–inter-arm mass contrast and find suggestive evidence that they are more evident for galaxies with stronger spiral arms. Furthermore, we find systematic variations in α between samples of H  II regions with a high and low ionization parameter, q , and argue that they are driven by the aging of H  II regions.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 509, No. 1 ( 2021-11-13), p. 1303-1322
    Abstract: Understanding the spatial distribution of metals within galaxies allows us to study the processes of chemical enrichment and mixing in the interstellar medium. In this work, we map the 2D distribution of metals using a Gaussian Process Regression (GPR) for 19 star-forming galaxies observed with the Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT–MUSE) as a part of the PHANGS–MUSE survey. We find that 12 of our 19 galaxies show significant 2D metallicity variation. Those without significant variations typically have fewer metallicity measurements, indicating this is due to the dearth of ${\rm H\, {\small II}}$ regions in these galaxies, rather than a lack of higher-order variation. After subtracting a linear radial gradient, we see no enrichment in the spiral arms versus the disc. We measure the 50 per cent correlation scale from the two-point correlation function of these radially subtracted maps, finding it to typically be an order of magnitude smaller than the fitted GPR kernel scale length. We study the dependence of the two-point correlation scale length with a number of global galaxy properties. We find no relationship between the 50 per cent correlation scale and the overall gas turbulence, in tension with existing theoretical models. We also find more actively star-forming galaxies, and earlier type galaxies have a larger 50 per cent correlation scale. The size and stellar mass surface density do not appear to correlate with the 50 per cent correlation scale, indicating that perhaps the evolutionary state of the galaxy and its current star formation activity is the strongest indicator of the homogeneity of the metal distribution.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-02), p. A67-
    Abstract: Mapping star-formation rates (SFR) within galaxies is key to unveiling their assembly and evolution. Calibrations exist for computing the SFR from a combination of ultraviolet and infrared bands for galaxies as integrated systems, but their applicability to sub-galactic (kiloparsec) scales remains largely untested. We used integral field spectroscopy of 19 nearby ( D   〈  20 Mpc) galaxies obtained by PHANGS–MUSE to derive accurate Balmer decrements (H α /H β ) and attenuation-corrected H α maps. We combined this information with mid-infrared maps from WISE at 22 μm and ultraviolet maps from GALEX in the far-UV band to derive SFR surface densities in nearby galaxies on resolved (kiloparsec) scales. Using the H α attenuation-corrected SFR as a reference, we find that hybrid recipes from the literature overestimate the SFR in regions of low SFR surface density, low specific star-formation rate (sSFR), low attenuation, and old stellar ages. We attribute these trends to heating of the dust by old stellar populations (IR cirrus). We calibrated this effect by proposing functional forms for the coefficients in front of the IR term that depend on band ratios sensitive to the sSFR. These recipes return SFR estimates that agree with those in the literature at high sSFR (log(sSFR/yr −1 ) 〉  − 9.9). Moreover, they lead to negligible bias and 〈 0.16 dex scatter when compared to our reference attenuation-corrected SFR from H α . These calibrations prove reliable as a function of physical scale. In particular, they agree within 10% with the attenuation corrections computed from the Balmer decrement on 100 pc scales. Despite small quantitative differences, our calibrations are also applicable to integrated galaxy scales probed by the MaNGA survey, but with a larger scatter (up to 0.22 dex). Observations with JWST open up the possibility to calibrate these relations in nearby galaxies with cloud-scale (∼100 pc) resolution mid-IR imaging.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 502, No. 1 ( 2021-02-03), p. 1366-1385
    Abstract: The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of star clusters is essential for measuring their physical properties and studying their evolution. We report on the use of the publicly available Code Investigating GALaxy Emission (cigale) SED fitting package to derive ages, stellar masses, and reddenings for star clusters identified in the Physics at High Angular resolution in Nearby GalaxieS–HST (PHANGS–HST) survey. Using samples of star clusters in the galaxy NGC 3351, we present results of benchmark analyses performed to validate the code and a comparison to SED fitting results from the Legacy Extragalactic Ultraviolet Survey. We consider procedures for the PHANGS–HST SED fitting pipeline, e.g. the choice of single stellar population models, the treatment of nebular emission and dust, and the use of fluxes versus magnitudes for the SED fitting. We report on the properties of clusters in NGC 3351 and find, on average, the clusters residing in the inner star-forming ring of NGC 3351 are young ( & lt;10 Myr) and massive (105 M⊙) while clusters in the stellar bulge are significantly older. Cluster mass function fits yield β values around −2, consistent with prior results with a tendency to be shallower at the youngest ages. Finally, we explore a Bayesian analysis with additional physically motivated priors for the distribution of ages and masses and analyse the resulting cluster distributions.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...