GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 828-828
    Abstract: T-cell acute lymphoblastic leukemia (T-ALL) in adults represents a disease with a rather unfavourable prognosis. Despite the fact that treatment stratification and minimal residual disease (MRD) monitoring have improved survival, there is still need to improve outcome by the development of novel targeted therapies. Therefore, molecular alterations are in the focus of on-going research. Until recently only few candidates were identified as recurringly mutated genes including NOTCH1, FBXW7, PTEN. The development of next generation sequencing (NGS) significantly enlarged this spectrum and identified alterations in additional genes (BCL11B, PHF6, DNM2, CNOT3, KRAS, NRAS, DNMT3A). Whereas a number of putative driver mutations have been characterized, the spectrum of recurring alterations in larger cohorts and their relevance in different leukemic subgroups remains unexplored. To unravel relevant recurring alterations in a large cohort of adult T-ALL and to explore potential target genes for novel therapeutic strategies, we performed targeted high throughput NGS of 88 candidates in 81 T-ALL samples. Patients and methods We investigated 67 adult T-ALL patients enrolled in the trial 07/2003 of the German Acute Lymphoblastic Leukemia Multicenter Study Group (GMALL). In addition, 14 patients with early T-precursor ALL (ETP-ALL) from other GMALL trials were analysed. Customized biotinylated RNA oligo pools (SureSelect, Agilent) were used to select the targeted regions. We performed 76-bp paired-end sequencing on an Illumina Genome Analyzer IIx platform and reads were mapped to NCBI hg19 RefSeq. For a variant call we required at least a read depth of 20, an allele frequency of 20% and an average base calling quality of Q13. Polymorphisms annotated in dbSNP 135 were excluded. The targeted region comprised 88 genes known to be frequently mutated in ALL, acute myeloid leukemia, myelodysplastic syndrome as well as genes associated with epigenetic regulation, splicing, DNA mismatch repair, and the NOTCHpathway. Results We obtained an average of 1.2 Mbp sequence for each sample, resulting in an average coverage of 120 reads for the target region. 79% of the targeted region was covered with a minimum of 20 reads. After exclusion of polymorphism annotated in dbSNP135, 473 single nucleotide variations (SNV) and small indels were identified, 294 of those resulted in changes on the protein level. On average three (3.1) genes per patient were mutated, and 66 (77%) of the 88 genes were mutated in at least one patient. As expected, the highest mutation rate with 53% was found for NOTCH1, with a higher frequency in thymic T-ALL (67.5%) than in early T-ALL (33.3%). Mutation frequencies of FBXW7 (10%), WT1 (10%), JAK3 (12%), and BCL11B (10%) were in the range of reported frequencies. Recently identified novel alterations in DNM2 (17%), PHF6 (11%), DNMT3A (5%) or RELN (5%) were confirmed in our cohort. Interestingly, genes that had not been described in T-ALL included recurring mutations in the histone methyl-transferase MLL2 (11%), frequently mutated in B-cell lymphomas. Like in lymphoma and in the Kabuki syndrome, MLL2 mutations were distributed over the entire gene without any obvious hot spot region. Also the protocadherins FAT1 (15%) and FAT3 (12%) were recurringly altered. FAT1and its inactivation by mutations were recently linked to activation of the WNT pathway in solid tumours. Affected pathways significantly differed in leukemic subgroups: whereas mutations involving the NOTCH pathway were predominately enriched in the thymic subgroup (75%) and less relevant in early T-ALL (33%, P=0.004), chromatin modifiying genes (17% vs. 5%, P=0.22) and signalling genes (42% vs. 15%, P=0.09) were more frequently mutated in early T-ALL. Spliceosome mutations described in myeloid and mature lymphoid malignancies were present only in a minority (7.4%) of T-ALL. Conclusion Adult T-ALL reveals a highly heterogeneous spectrum of candidate gene mutations. Here we provide an original and comprehensive overview of recurring mutations that unravel preferentially pathways altered in specific leukemic subgroups. In addition, we identified novel candidate genes with potential therapeutic implications (FAT1, EZH2, DNMT3A). These mutations have to be validated in a larger cohort with a focus on clinical implications accompanied by functional assays regarding their use as therapeutic targets. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 5 ( 2015-02-20), p. 2754-2766
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 121, No. 23 ( 2013-06-06), p. 4749-4752
    Abstract: Exome sequencing of adult ETP-ALL reveals new recurrent mutations; in particular, DNMT3A is frequently mutated in adult ETP-ALL. More than 60% of all adult patients with ETP-ALL harbor a mutation that could potentially be targeted by a specific therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 56, No. 1 ( 2017-01), p. 75-86
    Abstract: Deletions of the long arm of chromosome 9 [del(9q)] are a rare but recurring aberration in acute myeloid leukemia (AML). Del(9q) can be found as the sole abnormality or in combination with other cytogenetic aberrations such as t(8;21) and t(15;17). TLE1 and TLE4 were identified to be critical genes contained in the 9q region. We performed whole exome sequencing of 5 patients with del(9q) as the sole abnormality followed by targeted amplicon sequencing of 137 genes of 26 patients with del(9q) as sole or combined with other aberrations. We detected frequent mutations in NPM1 (10/26; 38%), DNMT3A (8/26; 31%), and WT1 (8/26; 31%) but only few FLT3 ‐ITDs (2/26; 8%). All mutations affecting NPM1 and DNMT3A were exclusively identified in patients with del(9q) as the sole abnormality and were significantly more frequent compared to 111 patients classified as intermediate‐II according to the European LeukemiaNet (10/14, 71% vs. 22/111, 20%; P   〈  0.001, 8/14, 57% vs. 26/111, 23%; P  = 0.02). Furthermore, we identified DNMT3B to be rarely but recurrently targeted by truncating mutations in AML. Gene expression analysis of 13 patients with del(9q) and 454 patients with normal karyotype or various cytogenetic aberrations showed significant down regulation of TLE4 in patients with del(9q) ( P  = 0.02). Interestingly, downregulation of TLE4 was not limited to AML with del(9q), potentially representing a common mechanism in AML pathogenesis. Our comprehensive genetic analysis of the del(9q) subgroup reveals a unique mutational profile with the frequency of DNMT3A mutations in the del(9q) only subset being the highest reported so far in AML, indicating oncogenic cooperativity. © 2016 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-08-13)
    Abstract: The patho-mechanism of somatic driver mutations in cancer usually involves transcription, but the proportion of mutations and wild-type alleles transcribed from DNA to RNA is largely unknown. We systematically compared the variant allele frequencies of recurrently mutated genes in DNA and RNA sequencing data of 246 acute myeloid leukaemia (AML) patients. We observed that 95% of all detected variants were transcribed while the rest were not detectable in RNA sequencing with a minimum read-depth cut-off (10x). Our analysis focusing on 11 genes harbouring recurring mutations demonstrated allelic imbalance (AI) in most patients. GATA2 , RUNX1 , TET2 , SRSF2 , IDH2 , PTPN11 , WT1 , NPM1 and CEBPA showed significant AIs. While the effect size was small in general, GATA2 exhibited the largest allelic imbalance. By pooling heterogeneous data from three independent AML cohorts with paired DNA and RNA sequencing (N = 253), we could validate the preferential transcription of GATA2 -mutated alleles. Differential expression analysis of the genes with significant AI showed no significant differential gene and isoform expression for the mutated genes, between mutated and wild-type patients. In conclusion, our analyses identified AI in nine out of eleven recurrently mutated genes. AI might be a common phenomenon in AML which potentially contributes to leukaemogenesis.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 288-288
    Abstract: Even though two-thirds of acute myeloid leukemia (AML) patients respond to induction chemotherapy and achieve complete remission (CR), the majority of these patients will eventually relapse. The time from CR to relapse is an important clinical indicator of disease aggressiveness, as patients relapsing within the first 6 months after initial diagnosis have a poorer prognosis in terms of response to salvage therapy and overall survival compared to patients with a later relapse. To learn about the evolution during the course of disease, we analyzed the somatic mutation patterns from initial diagnosis to relapse in 50 cytogenetically normal (CN) AML patients. Based on the ELN classification, 38% of the patients (n=19) were assigned as "favorable" at diagnosis, all other patients were classified as "intermediate-I". ELN classification was associated with time to relapse as "intermediate-I" patients relapsed earlier than "favorable" patients (median 9.3 months vs. 16.1 months, p=0.008, log-rank test). Somatic alterations were detected by exome sequencing and confirmed by targeted amplicon sequencing of matched diagnostic, remission and relapse samples. FLT3-ITD and NPM1 mutation status were obtained from routine diagnostic tests as the reliable detection of these markers by NGS remains challenging. The vast majority of somatic alterations were present both at diagnosis and at relapse, hereafter referred to as stable mutations (70%, Fig. 1A). All patients in our cohort had ≥1 stable mutation with DNMT3A being the most stably altered gene. In 47 out of 50 patients (94%), we observed mutations that were only found at diagnosis or only at relapse. Based on the mutation patterns, four distinct 'evolutionary' subgroups of patients were defined (Fig. 1B): (I) patients with an identical mutation profile at diagnosis and at relapse ("stable", n=3, 6%), (II) patients who gained mutations at relapse ("stable + gain", n=24, 48%), (III) patients that lost mutations at relapse ("stable + loss", n=8, 16%), and (IV) patients with both loss and gain of mutations at relapse ("mixed", n=15, 30%). Mutations that were lost during the course of the disease were detected in e.g. PTPN11 or NRAS. Relapse-specific mutations were identified in e.g. IDH1/2, WT1, KPNB1 or KDM6A. Evolutionary subgroups showed differences in time to relapse (Fig. 1C). Patients with "stable + loss" relapsed earlier (median 4.1 months) than patients with gain of mutation at relapse (groups "stable + gain" and "mixed", median 12.2 months). All patients in the category "stable + loss" developed relapse within the first year after complete remission. The "stable" group of 3 patients showed an intermediate time to relapse (median 9.6 months), but was too small for a statistically valid comparison. Ultimately, the genetic evolution of CN-AML patients without gain of new mutations at relapse (categories "stable" and "stable + loss") was associated with significantly earlier relapse compared to patients that gained mutations at relapse (categories "stable + gain" and "mixed", Fig. 1D, p=0.001, log-rank test). Distinct predominant patterns of clonal evolution were observed in the ELN genetic groups, as only one patient of the "stable + loss" group was initially classified as "favorable". Interestingly, applying the ELN classification on relapse samples revealed a switch from "favorable" to "intermediate-I" in six patients, all with gain of mutations at relapse. This points towards more aggressive genetic profiles at relapse in these patients. The acquisition of mutations and/or the outgrowth of a resistant clone during/after chemotherapy might require a longer time or is per se associated with a longer time to relapse and a more favorable prognosis. Loss of mutations at relapse suggest the presence of two clones at diagnosis, with a chemotherapy resistant clone expanding after the eradication of a chemotherapy sensitive clone. As both clones share mutations and only the sensitive clone contains specific alterations, the resistant clone might be an ancestor of the sensitive clone. Taken together, in some patients the AML cells may require additional genetic alterations to become chemotherapy resistant, whereas in other patients the selective eradication of a sensitive clone is a potential mechanism underlying disease progression. Understanding the evolution of AML under selective pressure of chemotherapy is essential to cure or prevent AML relapse. Disclosures Hiddemann: Roche: Other: Grants; Genentech: Other: Grants; Roche: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 690-690
    Abstract: Cytogenetically normal acute myeloid leukemia (CN-AML) is a heterogeneous disease with regard to genetic alterations and clinical outcome. Recent sequencing studies categorized the growing number of recurrently mutated genes into different functional groups, e.g. myeloid transcription factors, tumor suppressors, signal transducers, chromatin modifiers, cohesin-complex and spliceosome-complex. We set out to characterize mutations in genes linked to epigenetic regulation during the progression of CN-AML. Besides genes directly involved in chromatin modification (i.e. DNMT3A, TET2, MLL, ASXL1, KDM6A, KDM2A, NSD1 and EZH2), we also studied mutations in WT1 and IDH1/2 since they are known to inhibit TET2 function. Targeted sequencing of 46 genes related to leukemia (mean coverage 〉 500x) was performed on matched diagnostic, remission and relapse samples of 50 patients with CN-AML (median age: 66, range: 21-89). We called somatic variants at diagnosis or at relapse and filtered for mutations with translational consequences, excluding known error-prone genes and common germline polymorphisms (dbSNP 138; MAF 〉 =1%). At diagnosis, 36/50 patients (72%) carried a total of 48 mutations in epigenetic regulators (Figure 1). The majority of patients harbored a single mutation affecting this functional group, while 2 or 3 mutations were observed in 9 and 1 patient(s), respectively. The median variant allele frequency (VAF) of the mutations was 42% (range: 22-98%), indicating that mutations in epigenetic regulators are early events and are present in the founding clone. Of the 48 mutations detected at diagnosis, only 2 were lost at relapse, highlighting the stability of these lesions during disease progression. Moreover, in 12/50 patients (24%), mutations in epigenetic regulators were acquired at relapse. All but one of these patients already had a mutation in another epigenetic regulator at diagnosis. We did not identify patients who acquired DNMT3A, TET2 or ASXL1 mutations during disease progression. However, mutations in WT1, IDH1, and KDM6A were gained in several patients at relapse. In 4/13 cases, the gained mutations were already detectable at low levels at diagnosis (median VAF: 2.9%, range: 0.3-6%, mean coverage at the investigated sites: 629x, range: 85-1625x). We also evaluated the presence of these mutations in remission: In 18 out of 36 (50%) patients, some of the mutations affecting DNMT3A (n=14), TET2 (n=3) or IDH2 (n=2) were present at a VAF 〉 5% (median: 22%, range: 9-75%) in cytomorphologically defined complete remission, suggesting the persistence of pre-leukemic clones with limited response to chemotherapy. Longer relapse-free survival was observed in patients with DNMT3A mutations that did not persist at remission (np-DNMT3A) in comparison to patients with persisting DNMT3A mutations (p-DNMT3A). Remarkably, the latter group was enriched for patients that also harbored FLT3 internal tandem duplications (ITDs) (10/14 versus 1/8; Fisher's exact test, p=0.02). The vast majority of p-DNMT3A showed alterations of R882, whereas mutations at other positions of DNMT3A tended to be undetectable in remission. When including the NPM1 status, only 1/8 patient with np-DNMT3A was triple mutated, compared to 11/14 patients with p-DNMT3A, suggesting that co-occurrence of DNMT3A, FLT3- ITD and NPM1 c is associated with p-DNMT3A (p=0.006). In summary, we show that a high proportion of patients (72%) with relapsing CN-AML is affected by mutations in genes linked to epigenetic regulation. The stability of these mutations between diagnosis and relapse in combination with their acquisition during disease progression, as well as the frequent persistence of DNMT3A, TET2 and IDH2 mutations during remission underscore the necessity for new therapeutic approaches. The striking association of DNMT3A R882 mutations with NPM1 c and FLT3 -ITD suggest a unique mechanism of oncogenic collaboration. Persistence of DNMT3A R882 mutations may indicate a fertile ground for relapse. Further studies will be required to clarify whether the actual relapse arises from a preleukemic clone harboring only the founder mutation or from residual leukemia cells containing several genetic lesions. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3859-3859
    Abstract: Exome sequencing is widely used and established to detect tumor-specific sequence variants such as point mutations and small insertions/deletions. Beyond single nucleotide resolution, sequencing data can also be used to identify changes in sequence coverage between samples enabling the detection of copy number alterations (CNAs). Somatic CNAs represent gain or loss of genomic material in tumor cells like aneuploidies (e.g. monosomies and trisomies), duplications, or deletions. In order to test the feasibility of somatic CNA detection from exome data, we analyzed 13 acute myeloid leukemia (AML) patients with known cytogenetic alterations detected at diagnosis (n=8) and/or at relapse (n=11). Corresponding remission exomes from all patients were available as germline controls resulting in 19 comparisons of paired leukemia and remission exome data sets. Exome sequencing was performed on a HiSeq 2500 instrument (Illumina) with mean target coverage of 〉 100x. Exons with divergent coverage were detected using a linear regression model on mean exon coverage, and CNAs were called by an exact segmentation algorithm (Rigaill et al. 2012, Bioinformatics). For all samples, cytogenetic information was available either form routine chromosomal analysis or fluorescent in situ hybridization (FISH). Blast count were known for all but one AML sample (n=19). Copy number-neutral cytogenetic alterations such as balanced translocations were excluded from the comparative analysis. By CNA-analysis of exomes we were able to detect chromosomal aberrations consistent with routine cytogenetics in 18 out of 19 (95%) AML samples. In particular, we confirmed 2 out of 2 monosomies (both -7), and 9 out of 10 trisomies (+4, n=1; +8, n=8; +21, n=1), e.g. trisomy 8 in figure 1A. Partial amplifications or deletions of chromosomes were confirmed in 10 out of 10 AML samples (dup(1q), n=3; dup(8q), n=1; del(5q), n=3; del(17p), n=1; del(20q), n=2), e.g. del(5q) in figure 1B. In the one case with inconsistent findings of chromosomal aberrations between exome and cytogenetic data there was a small subclone harboring the alteration described in only 4 out of 21 metaphases (19%). To assess the specificity of our CNA approach, we analyzed the exomes of 44 cytogenetically normal (CN) AML samples. Here we did not detect any CNAs larger than 5 Mb in the vast majority of these samples (43/44, 98%), only one large CNA was detected indicating a trisomy 8. Estimates of the clone size were highly correlated between CNA-analysis of exomes and the parameters from cytogenetics and cytomorphology (p=0.0076, Fisher's exact test, Figure 1C). In CNA-analysis of exomes, we defined the clone size based on the coverage ratio: . Clone size estimation by cytogenetics and cytomorphology was performed by calculating the mean of blast count and abnormal metaphase/interphase count. Of note, clones estimated by CNA-analysis of exomes tended to be slightly larger. This may result from purification by Ficoll gradient centrifugation prior to DNA extraction for sequencing and/or the fact that the fraction of cells analyzed by cytogenetics does not represent the true size of the malignant clone accurately because of differences in the mitotic index between normal and malignant cells. Overall, there was a high correlation between our CNA analysis of exome sequencing data and routine cytogenetics including limitations in the detection of small subclones. Our results confirm that high throughput sequencing is a versatile, valuable, and robust method to detect chromosomal changes resulting in copy number alterations in AML with high specificity and sensitivity (98% and 95%, respectively). Figure 1. (A) Detection of trisomy 8 with an estimated clone size of 100% (B) Detection of deletion on chromosome 5q with an estimated clone size of 90% (C) Correlation of clone size estimation by routine diagnostics and exome sequencing (p=0.0076) Figure 1. (A) Detection of trisomy 8 with an estimated clone size of 100%. / (B) Detection of deletion on chromosome 5q with an estimated clone size of 90%. / (C) Correlation of clone size estimation by routine diagnostics and exome sequencing (p=0.0076) Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Oncotarget, Impact Journals, LLC, Vol. 9, No. 53 ( 2018-07-10), p. 30128-30145
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 103, No. 12 ( 2018-12), p. e581-e584
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2018
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...