GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gordoa, Ana  (2)
  • 2020-2024  (2)
  • 1
    In: Sensors, MDPI AG, Vol. 20, No. 9 ( 2020-05-06), p. 2658-
    Abstract: Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009–2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009–2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of −0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (−0.15 mg·l−1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Fisheries Oceanography, Wiley, Vol. 31, No. 5 ( 2022-09), p. 524-538
    Abstract: The spatial distribution patterns of Merluccius capensis in the Namibian waters were investigated and related to average environmental conditions during 1996–2020. Fisheries‐independent data and simultaneously collected water temperature and dissolved oxygen data were used from austral summer surveys. A geostatistical kriging approach was employed to evaluate the spatial structure of hakes. Links to environmental conditions were explored via data‐driven generalized additive models (GAMs). M. capensis generally exhibited average patch sizes between 40 and 50 nm at depths between 180 and 280 m. During the extreme episodic water warming in 2011 related to a Benguela‐Niño, the hake patches shrank up to a historical minimum of about 13 nm and moved offshore showing maximum densities at unusual deeper bottoms between 260 and 320 m. The deepening and size reduction of aggregations did not alter the biomass estimates (570 kt) that remained within historical ranges (249–811 kt). Although other extremely warm and cold summers were reported during the study period, no significant impact on the M. capensis patch size was detected. Maximum M. capensis densities were linked to optimal bottom temperature range between 10.1 and 11.8°C, dissolved oxygen values close to zero nearshore, and between 0.8 and 1.4 ml/L offshore. Potential changes of biomass produced by extreme environmental events remained undetected within the interannual biomass ranges, suggesting a high resilience capacity to episodic extreme environmental events.
    Type of Medium: Online Resource
    ISSN: 1054-6006 , 1365-2419
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1214985-8
    detail.hit.zdb_id: 2020300-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...