GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • MDPI AG  (2)
  • Gong, Huan  (2)
  • Mu, Bin  (2)
Materialart
Verlag/Herausgeber
  • MDPI AG  (2)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 4 ( 2022-02-11), p. 1985-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 4 ( 2022-02-11), p. 1985-
    Kurzfassung: Maturing male germ cells undergo a unique developmental process in spermiogenesis that replaces nucleosomal histones with protamines, the process of which is critical for testicular development and male fertility. The progress of this exchange is regulated by complex mechanisms that are not well understood. Now, with mouse genetic models, we show that barrier-to-autointegration factor-like protein (BAF-L) plays an important role in spermiogenesis and spermatozoal function. BAF-L is a male germ cell marker, whose expression is highly associated with the maturation of male germ cells. The genetic deletion of BAF-L in mice impairs the progress of spermiogenesis and thus male fertility. This effect on male fertility is a consequence of the disturbed homeostasis of histones and protamines in maturing male germ cells, in which the interactions between BAF-L and histones/protamines are implicated. Finally, we show that reduced testicular expression of BAF-L represents a risk factor of human male infertility.
    Materialart: Online-Ressource
    ISSN: 1422-0067
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2019364-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 14 ( 2022-07-11), p. 7650-
    Kurzfassung: Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.
    Materialart: Online-Ressource
    ISSN: 1422-0067
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2019364-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...