GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (2)
  • Gong, Hao  (2)
  • Xu, Guoliang  (2)
Material
Publisher
  • Hindawi Limited  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2021
    In:  Advances in Civil Engineering Vol. 2021 ( 2021-8-20), p. 1-11
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2021 ( 2021-8-20), p. 1-11
    Abstract: In order to understand the instability characteristics of surrounding rock in the process of deep roadway excavation, a three-dimensional numerical model was established by FLAC3D to systematically analyze the influence of roadway surrounding rock stability under different in situ stress distribution forms, and the environmental coefficient of mining-induced stress η was defined, the larger the environmental coefficient of mining-induced stress is, the larger the surrounding rock stress environment is, and the range where the η coefficient is greater than 0.2 is called with the destruction-danger zone. When the initial vertical stress is maximum principal stress and minimum principal stress, by comparing the roadway along the middle ground stress direction and minimum or maximum in-situ stress direction, the variation characteristics of displacement, failure zone and failure hazard zone of roadway surrounding rock are obtained, which provides theoretical basis for the treatment of disaster accidents such as roadway surrounding rock instability and rock burst caused by deep high in-situ stress.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Shock and Vibration, Hindawi Limited, Vol. 2021 ( 2021-8-18), p. 1-11
    Abstract: The capabilities of mining equipment and technology in China have been improving rapidly in recent years. Correspondingly, in the western part of the country, the mining heights of longwall faces in shallow-buried coal seams have shown an increasing trend, resulting in enhanced mining efficiency. However, the problems associated with the possible failure of the coal wall then increase and remain a serious difficulty, restricting safe and efficient mining operations. In the present study, the 12401 longwall face of the Shangwan Coal Mine, Inner Mongolia, China, with a mining height of 8.8 m, is taken as an example to study the mechanisms underlying failure phenomena of coal walls and their control methods. Our results show that the failure region inward of the longwall face is small in shallow-buried coal seams, and the damage degree of the exposed coal wall is low. The medium and higher sections of the coal wall display a dynamic failure mode, while the broken coal blocks, given their initial speed, threaten the safety of coal miners. A mechanical model was developed, from which the conditions for tensile failure and structural instability are deduced. Horizontal displacement in the lower part of the coal wall is small, where no tensile stress emerges. On the other hand, in the intermediate and higher parts of the coal wall, horizontal displacement is relatively large. In addition, tensile stress increases first with increasing distance from the floor and then decreases to zero. Experiments using physical models representing different mining heights have been carried out and showed that the horizontal displacement increases from 6 to 12 mm and load-bearing capacity decreases from 20 to 7.9 kN when the coal wall increases in height from 3 to 9 m. Furthermore, failure depth and failure height show an increasing trend. It is therefore proposed that a large initial support force, large maximum support force, large support stiffness, and large support height of a coal wall-protecting guard are required for the improved stability of high coal walls, which operate well in the Shangwan coal mine.
    Type of Medium: Online Resource
    ISSN: 1875-9203 , 1070-9622
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2070162-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...