GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Goebel, Werner  (1)
  • Mehlitz, Adrian  (1)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Molecular Microbiology, Wiley, Vol. 103, No. 6 ( 2017-03), p. 1004-1019
    Abstract: Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis , we labeled infected HeLa or Caco‐2 cells with 13 C‐marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC‐MS‐based isotopologue analysis of protein‐derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT‐ICR‐MS analyses also demonstrated that label from exogenous 13 C‐glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6‐phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13 C‐malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co‐substrate usage of intracellular C. trachomatis in a stream‐lined bipartite metabolism with host cell‐supplied amino acids for protein biosynthesis, host cell‐provided glucose 6‐phosphate for cell wall biosynthesis, and, to some extent, one or more host cell‐derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso‐2,6‐diaminopimelate required for the formation of chlamydial peptidoglycan.
    Type of Medium: Online Resource
    ISSN: 0950-382X , 1365-2958
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1501537-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...