GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 6251-6251
    Abstract: Introduction: Although a number of effective drugs are available to treat central nervous system (CNS) disorders, their ability to breach the tight regulation of the blood brain barrier (BBB) still remains a major challenge. Recently, the use of tumor treating fields (TTFields) has become an effective treatment approach for glioblastoma. Furthermore, its combination with chemotherapy significantly improved overall patient survival. Nonetheless, how TTFields could affect the BBB has not yet been studied. Our recent findings exhibit the potential of TTFields administration to open up the BBB in vitro with an optimal frequency of 100 kHz. Consequently, in this study, we therefore aimed to validate our data in vivo. Experimental procedures: Subsequent to 100 kHz TTFields or heat treatment for 72 h, rats were i.v. injected with Evan´s Blue (EB). Next, they were sacrificed to extract and quantify EB from the brain. In the same manner, rats were injected with TRITC-dextran (TD), after which permeation was visualized in sectioned brains. Cryosections of rat brains were also prepared post-TTFields treatment. These were stained for intercellular junction proteins claudin-5, occludin and PECAM-1 as well as immunoglobulin G (IgG) to assess vessel structure. Finally, serial dynamic contrast-enhanced (DCE) MRI with gadolinium (Gd) contrast agent was performed before and after TTFields administration. Results: Permeation of both EB and TD was observed in the brain after TTFields application. Moreover, brain cryosections displayed claudin-5 and occludin delocalization but not PECAM-1. Accumulation of IgG in the brain parenchyma was also noted. Confirming these observations, increased Gd in the brain was shown by DCE-MRI post TTFields treatment. A reversion to normal conditions was, however, detected 96 h after end of treatment demonstrated by no difference in contrast enhancement between control and TTFields-treated rats. Conclusions: Administration of 100 kHz TTFields in rats led to alterations in BBB integrity and permeability, which signal its opening. The subsequent recovery of the BBB at the end of treatment demonstrates transient effects, hence presenting TTFields as a possible novel clinical strategy to open the BBB for enhanced and more effective drug delivery strategy for CNS disorders. Citation Format: Ellaine Salvador, Almuth F. Kessler, Julia Hörmann, Malgorzata Burek, Catherine T. Brami, Tali V. Sela, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Förster, Carsten Hagemann. Blood brain barrier opening by TTFields: a future CNS drug delivery strategy [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 6251.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 279-279
    Abstract: Introduction Alternating electric fields of intermediate frequency and low intensity, known as Tumor Treating Fields (TTFields), are an effective and clinically approved approach for treatment of glioblastoma (GBM). The optimal frequency for treatment of glioma cells based on the cytotoxic response is at 200 kHz. Combination of TTFields with chemotherapy appears to be synergistic with further increase in overall survival of patients with GBM, beyond that with chemotherapy alone. The blood brain barrier (BBB) limits delivery of a majority of drugs to the brain thus limiting treatment options for GBM patients. Recent in vitro studies suggest that TTFields applied at 100 kHz can disturb the BBB. In this study, we investigated the potential use of TTFields to transiently disturb the BBB in animal models. Methods BBB permeation was tested in healthy rats subsequently to 100 kHz TTFields or sham (heat) application to the rat head. BBB permeability was analyzed by several staining agents: (1) Evans Blue (EB) that was quantified at 610 nm in brain homogenates; (2) 4 kDa TRITC-dextran (TD) that was quantified based on fluorescence intensity in brain cryosections; and (3) the MRI contrast agent Gd-DTPA. Accumulation and clearance of Gd-DTPA were tracked by serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In addition, brain sections were stained for claudin-5, occludin, PECAM-1 and immunoglobulin G (IgG). BBB permeation induced by TTFields was further evaluated in rats orthotopically bearing F98 glioma cells and treated with TTFields at 100 kHz in combination with the chemotherapeutic drug paclitaxel (PTX) for a duration of 72 h. Tumor cell proliferation was assessed by Ki67 staining and the tumor volume was measured by T2 weighted MRI. Results BBB permeation of EB and TD staining agents was observed in the brains of healthy rats after TTFields application. Moreover, brain cryosections displayed delocalization of claudin-5 and occludin, but not of PECAM-1. Accumulation of IgG in the brain parenchyma was also noted. Confirming these observations, DCE-MRI post-TTFields treatment showed accumulation of Gd in the brain. Return to normal BBB integrity was detected 96 h after TTFields treatment cessation, indicating the effect was transient and reversible. In GBM-induced rats, the combination of PTX (a drug which normally does not cross the BBB) with TTFields significantly decreased tumor cell proliferation and tumor volume compared to animals treated with TTFields alone, sham alone, or sham combined with PTX. Conclusions Administration of 100 kHz TTFields to the brain of rats led to transient alterations in BBB integrity and permeability, allowing increased uptake of combination chemotherapy. These data indicate that TTFields treatment may be a feasible, novel clinical strategy for transient opening of the BBB to allow for enhanced and more effective delivery of permeable and non-permeable anticancer drugs to the brain. Citation Format: Catherine Tempel Brami, Ellaine Salvador, Almuth F. Kessler, Malgorzata Burek, Tali Voloshin, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Förster, Carsten Hagemann. Transient opening of the blood brain barrier by Tumor Treating Fields (TTFields) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 279.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 387-387
    Abstract: The clinical translatability of novel drug delivery systems begins with basic scientific breakthroughs. Our recent discovery of the ability of Tumor Treating Fields (TTFields) to potentially and transiently disrupt the blood brain barrier (BBB) using our murine in vitro and in vivo models, led us to validate our findings in a human 3D in vitro model established in our lab. The model consists of primary brain microvascular endothelial cells co-cultured with immortalized perciytes in a transwell system. TTFields are alternating electric fields of low intensity (1-3V/cm) and intermediate frequency (100-300kHz), which are effective and approved for the treatment of glioblastoma (GBM) using 200kHz frequency. Our murine data point out that TTFields could disrupt the BBB optimally at 100kHz. To investigate if TTFields exhibit similar effects in the human cell-based in vitro model, it was subjected to TTFields at various frequencies for 24-96h. Cells were afterwards made to recover for 24-96h. To assess BBB integrity and compromise, transendothelial electrical resistance (TEER) was measured before start of TTFields, immediately after end of TTFields, as well as 24-96h after TTFields. In addition, a permeability assay was performed. Finally, immunofluorescence (IF) staining visualized the effects of TTFields on tight junction protein claudin-5 localization. TTFields application of all investigated frequencies significantly decreased TEER. However, the strongest effects were observed with 100kHz after 72h. IF staining revealed delocalization of claudin-5 from the cell boundaries to the cytoplasm. Restoration of cell integrity was already evident as early as 24h, with complete recovery after 48h. Results using our human 3D in vitro model validated our previous observations from murine in vitro and in vivo models that TTFields could transiently disrupt the BBB. These findings provide fundamental pre-clinical data for translation from bench to bedside. Accordingly, TTFields demonstrate to be a promising novel approach in opening the BBB to facilitate drug delivery for improved treatment of central nervous system diseases including devastating brain tumors such as GBM. Citation Format: Ellaine Salvador, Almuth F. Kessler, Theresa Köppl, Sebastian Schönhärl, Malgorzata Burek, Catherine Tempel Brami, Tali Voloshin, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Y. Förster, Carsten Hagemann. Blood brain barrier (BBB) disruption by tumor treating fields (TTFields) in a human 3D in vitro model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 387.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 252-252
    Abstract: Background: The blood-brain barrier (BBB) may impede application of drugs to the brain for treatment of malignant brain tumors, in particular glioblastoma multiforme (GBM). Alternating electric fields with intermediate frequency and low intensity, called Tumor Treating Fields (TTFields), are an established novel adjuvant treatment modality for GBM. Here, the effect of TTFields on BBB permeability is analyzed. Material and Methods: After TTFields treatment with a frequency of 100-300 kHz for up to 72 h, immortalized murine brain capillary endothelial cells (cerebEND) grown on cover slips and transwell inserts were stained for immunofluorescent assessment of the tight junction proteins Claudin-5 and ZO-1. Transendothelial electrical resistance (TEER) was applied to investigate BBB integrity. Moreover, BBB permeability was determined by fluorescein isothiocyanate (FITC) staining followed by flow cytometry. For in vivo analysis, the increase in vessel permeability was quantified by utilizing i.v. injected Evans Blue (EB) in rats during TTFields application to the brain (100 kHz, 72 h). Results: The BBB was disturbed by treatment with TTFields as tight junction proteins were delocalized from the cell boundaries to the cytoplasm with maximal effects at 100 kHz. TTFields application significantly reduced the BBB integrity by 65% and significantly increased the BBB permeability for 4 kDa large molecules. Initial recovery of the cell morphology was observed 48 h post-treatment and a complete recovery could be detected after 96 h, indicating a reversibility of the TTFields effect on the BBB. Average accumulation of EB in the rat brain was significantly increased by TTFields application to the rats head. Conclusion: In the future, TTFields could be utilized to deliver drugs generally unable to cross the BBB to the central nervous system as TTFields at a frequency of 100 kHz are potentially able to disrupt the BBB. The data presented on in vitro and in vivo application of TTFields to permeabilize the BBB may be a rationale for a phase I clinical trial and clinical application in the future. Citation Format: Almuth F. Kessler, Clara M. Schaeffer, Malgorzata Burek, Ursula Ruschig, Catherine Tempel-Brami, Tali Voloshin, Moshe Giladi, Ellaine Salvador, Ralf-Ingo Ernestus, Mario Löhr, Carola Förster, Carsten Hagemann. Tumor treating fields (TTFields) affect blood brain barrier (BBB) integrity in vitro and in vivo [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 252.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 21, No. Supplement_6 ( 2019-11-11), p. vi82-vi82
    Abstract: For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biomolecules, MDPI AG, Vol. 12, No. 10 ( 2022-09-22), p. 1348-
    Abstract: Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...