GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Geyer, Beate  (3)
Materialart
Person/Organisation
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Reports Vol. 12, No. 1 ( 2022-10-31)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-10-31)
    Kurzfassung: The European Union has set the ambitious goal of becoming climate neutral by 2050, which has stimulated renewable energy production and accelerated the deployment of offshore wind energy in the North Sea. Here, a high-resolution regional climate model was used to investigate the impact on the sea surface climate of large-scale offshore wind farms that are proposed for the North Sea. The results show a significant reduction in the air-sea heat fluxes and a local, annual mean net cooling of the lower atmosphere in the wind farm areas down to more than 2.0 Wm −2 , due to a decrease in 10 m wind speed and turbulent kinetic energy and an increase in low-level clouds. Mean surface winds decreased by approximately 1 ms −1 downstream of wind farms. Furthermore, an increase of approximately 5% in mean precipitation was found over the wind farm areas. At a seasonal timescale, these differences are higher during winter and autumn than in other seasons. Although the offshore wind farms reduce the heat transport from the ocean to the atmosphere in the region of large wind farms, the atmospheric layers below the hub height show an increase in temperature, which is on the order of up to 10% of the climate change signal at the end of the century, but it is much smaller than the interannual climate variability. In contrast, wind speed changes are larger than projected mean wind speed changes due to climate change. Our results suggest that the impacts of large clustered offshore wind farms should be considered in climate change impact studies. Moreover, the identified offshore windfarm impacts on the sea surface climate and the introduced spatial pattern in atmospheric conditions, in particular the modeled wind speed changes, suggest potential impacts on local ocean dynamics and the structure of the marine ecosystem. This should be considered in future scenarios for the North Sea marine environment and taken into account as a structuring influence in the offshore environment.
    Materialart: Online-Ressource
    ISSN: 2045-2322
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2022
    ZDB Id: 2615211-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-06-03)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-06-03)
    Kurzfassung: The European Union has set ambitious CO 2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms −1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.
    Materialart: Online-Ressource
    ISSN: 2045-2322
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2615211-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-08-27)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-08-27)
    Materialart: Online-Ressource
    ISSN: 2045-2322
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2615211-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...