GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 20 ( 2013-05-14), p. 8188-8193
    Abstract: Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but, apart from BRAF kinase mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. We performed high-resolution copy-number analysis on 44 formalin-fixed, paraffin-embedded diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gain, was observed in 28% of diffuse astrocytoma grade IIs and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene v-myb avian myeloblastosis viral oncogene homolog ( MYB ) on 6q23.3. Whole-genome sequencing of a MYBL1 -rearranged diffuse astrocytoma grade II demonstrated MYBL1 tandem duplication and few other events. Truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 46, No. 2 ( 2014-2), p. 161-165
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2012
    In:  Journal of Clinical Oncology Vol. 30, No. 15_suppl ( 2012-05-20), p. 2020-2020
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 30, No. 15_suppl ( 2012-05-20), p. 2020-2020
    Abstract: 2020 Background: Understanding the genetic alterations in cancer has lead to groundbreaking discoveries in targeted therapies. Meningiomas are among the most common primary brain tumors, with approximately 18,000 new cases diagnosed annually. Though certain genes have been associated with the development of meningiomas, most notably the tumor suppressor gene neurofibromatosis 2 (NF2), the genetic changes that drive meningiomas remain poorly understood. Our objective was to comprehensively characterize the somatic genetic alterations of meningiomas to gain insight into the molecular pathways that drive this disease. Methods: Fresh frozen specimens and paired blood were collected from 16 consented patients. DNA was extracted from regions of high tumor purity determined by evaluation of H & E slides. Whole-genome sequencing from 10 tumor-normal pairs and whole-exome sequencing from 6 tumor-normal pairs was carried out. We performed an unbiased screen for point mutations, insertions-deletions, rearrangements and copy-number changes across the exomes and genomes. Recurrent (potential driver) events were then analyzed with additional algorithms for statistical significance. Results: Alterations in the NF2 gene were present in 9 of 16 patients. Multiple novel rearrangements and recurrent non-NF2 mutations were also identified in the cohort. Massive genomic rearrangement termed chromothripsis was observed in chromosome 1 in one sample, which has never previously been described in meningiomas, and represents a potentially new mechanism of malignant transformation in this tumor type. Conclusions: While NF2 mutations appear to drive a majority of these tumors, our analysis has uncovered additional potential driver genes in meningiomas, particularly in those tumors negative for NF2 alterations. To our knowledge, this is the first study to comprehensively characterize the totality of somatic genetic alterations in meningiomas, and brings us closer to the development of new therapeutic targets for this disease.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2012
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 45, No. 3 ( 2013-3), p. 285-289
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. NG03-NG03
    Abstract: Background: Brain metastases are the most frequently occurring intracranial tumors in adults. Median survival after the diagnosis of a brain metastasis is in the order of a few months. Despite its large burden of disease and devastating clinical sequelae, we continue to have a limited understanding of how brain metastases evolve from their primary tumor. Our objectives were to (1) elucidate the evolutionary patterns leading the brain metastases and (2) identify whether brain metastases are genetically distinct from their matched primary tumors. Materials and Methods: We subjected 101 trios consisting of primary tumor, brain metastasis, and matched normal tissue to whole exome sequencing (WES). To analyze the data, we developed novel computational tools to perform an integrative analysis of somatic single nucleotide variants (SSNVs) and somatic copy-number alterations (SCNAs). This analysis allowed us to estimate the clonal architecture of the primary and metastatic samples from each patient, and to reconstruct a phylogenetic tree relating all of the subclones.Results: Every metastasis developed from a single clone, consistent with a single cell of origin. We did not detect evidence of self-seeding or a multiclonal origin of metastasis. In all cases, we observed a sibling or a branched evolutionary relationship; the brain metastasis and primary tumor share a common ancestor, but there was continued evolution in the primary tumor reflected by fully clonal mutations in the primary biopsy that were not present in the metastasis. When we average over all the phylogenetic trees, 61% of mutations are present in the common ancestor, 24% are unique to the metastasis and 15% are unique to the primary tumor. Subclonal mutations in the metastasis by definition occurred within the brain; these mutations displayed different mutational signatures than those acquired in the primary tumor. These contrasts were most pronounced in cases of lung cancer or melanoma, with tobacco and UV signatures prominent in these primaries and nearly absent from the mutations acquired after metastasis. In order to understand the molecular drivers of clonal evolution and metastasis in our data, we annotated each subclone with driver mutations identified using large numbers of cancer samples analyzed by the cancer genome atlas (TCGA) consortium. This produced a detailed portrait of each patient's cancer, with nearly node in each phylogenetic tree associated with at least one known driver. We found novel drivers, many of which are known actionable targets, in the clonal and subclonal populations within the brain metastases that were not present in the primary tumor. This suggests ongoing evolution within the brain. Similarly, novel subclonal and clonal drivers were detected in the biopsy of the primary tumor that were not present in the metastasis. The brain metastases were enriched for several pathways when compared to their matched primary tumors, some pathways specific to a particular histologic subtype.Conclusions: In this study, we report the latest results of the largest massively parallel sequencing study to date of matched brain metastases and primary tumors. We used intratumoral heterogeneity estimates to elucidate the evolutionary patterns observed in the process of metastasis. This study shifts our understanding of the metastasis paradigm and sheds light on the evolutionary and molecular mechanisms that are critical for brain metastasis. Our data suggests that single biopsies do not capture the heterogeneity within patients. Assessment of the subclonal phylogenetic architecture of primaries and their metastases should be considered when selecting targeted agents for patients with brain metastases. Citation Format: Priscilla K. Brastianos, Scott L. Carter, Sandro Santagata, Amaro Taylor-Weiner, Robert T. Jones, Peleg M. Horowitz, Keith L. Ligon, Joan Seaone, Elena Martinez-Saez, Josep Tabernero, Daniel P. Cahill, Sun-Ha Paek, Ian F. Dunn, Bruce E. Johnson, Toni K. Choueiri, Michael S. Rabin, Eric P. Winer, Nancy U. Lin, Paul Van Hummelen, Anat Stemmer-Rachamimov, Rameen Beroukhim, David L. Louis, Tracy T. Batchelor, Jose Baselga, Gad Getz, William C. Hahn. Genomic characterization of 101 brain metastases and paired primary tumors reveals patterns of clonal evolution and selection of driver mutations. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr NG03. doi:10.1158/1538-7445.AM2014-NG03
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...