GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2017-11-06)
    Abstract: Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 11 ( 2020-06-01), p. 2556-2564
    Abstract: Existing cell-free DNA (cfDNA) methods lack the sensitivity needed for detecting minimal residual disease (MRD) following therapy. We developed a test for tracking hundreds of patient-specific mutations to detect MRD with a 1,000-fold lower error rate than conventional sequencing. Experimental Design: We compared the sensitivity of our approach to digital droplet PCR (ddPCR) in a dilution series, then retrospectively identified two cohorts of patients who had undergone prospective plasma sampling and clinical data collection: 16 patients with ER+/HER2− metastatic breast cancer (MBC) sampled within 6 months following metastatic diagnosis and 142 patients with stage 0 to III breast cancer who received curative-intent treatment with most sampled at surgery and 1 year postoperative. We performed whole-exome sequencing of tumors and designed individualized MRD tests, which we applied to serial cfDNA samples. Results: Our approach was 100-fold more sensitive than ddPCR when tracking 488 mutations, but most patients had fewer identifiable tumor mutations to track in cfDNA (median = 57; range = 2–346). Clinical sensitivity was 81% (n = 13/16) in newly diagnosed MBC, 23% (n = 7/30) at postoperative and 19% (n = 6/32) at 1 year in early-stage disease, and highest in patients with the most tumor mutations available to track. MRD detection at 1 year was strongly associated with distant recurrence [HR = 20.8; 95% confidence interval, 7.3–58.9]. Median lead time from first positive sample to recurrence was 18.9 months (range = 3.4–39.2 months). Conclusions: Tracking large numbers of individualized tumor mutations in cfDNA can improve MRD detection, but its sensitivity is driven by the number of tumor mutations available to track.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell, Elsevier BV, Vol. 174, No. 2 ( 2018-07), p. 433-447.e19
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. LB-225-LB-225
    Abstract: Introduction: Precision medicine approaches to guide therapy selection require routine sampling of tumors. However, tumor biopsies are not always accessible and may be confounded by spatial heterogeneity. Liquid biopsies, including analysis of cell-free DNA (cfDNA), present a non-invasive alternative which may reflect multiple tumors in the body. Previous studies have demonstrated exome-wide concordance between single-site tumor biopsies and cfDNA, but little is known about how cfDNA reflects multiple lesions within a patient. Here we sought to determine how cfDNA reflects the body-wide tumor phylogeny, which will inform the use of cfDNA for cancer precision medicine. Methods: We identified 20 patients with pancreatic cancer who had undergone rapid autopsy. We then screened cfDNA tumor fraction and performed whole-exome sequencing of cfDNA and multiple tumor biopsies for 3 patients with cfDNA tumor fraction & gt;10%. We inferred the tumor phylogeny and then developed a statistical approach to deconvolute the contributions to cfDNA from tumor phylogenetic nodes. Finally, we determined whether shared trunk mutations could be detected in cfDNA and tumor biopsies. Results: For each patient, we found mutations shared between all sites and cfDNA, including putative driver mutations. We found mutations which were clonal in multiple regions were detectable in cfDNA, whereas mutations private to individual sites were never clonal in cfDNA. Through our deconvolution analysis, we found that cfDNA could not be modeled as a simple linear combination of individual sites, but rather that cfDNA represented multiple nodes in the inferred phylogeny. For two pancreatic adenocarcinoma patients, the inferred ancestor of the metastases had high estimated contribution ( & gt;70%) to cfDNA, while the ancestors of the primaries had lower contributions ( & lt;10%). Next, we considered trunk mutations, which originate earliest in the tumor phylogenetic tree. When we analyzed precision for detection of trunk mutations, we found on average, 71% of clonal mutations in metastases were truncal, while only 55% of clonal mutations in primary tumors were truncal. Due to copy number deletions, not all trunk mutations were detected in metastases. Finally, on average, cfDNA had equal or better precision than 83% of primaries and 88% of metastases, suggesting cfDNA may provide more accurate trunk SSNV calls than tumor biopsies. Conclusions: Through analyzing cfDNA and synchronous tumor biopsies from the same patient, we find trunk mutations are enriched in cfDNA as compared to the average single-site biopsy. We also predict that cfDNA represents multiple nodes in the inferred phylogeny. In cases where tumor biopsies are inaccessible, we demonstrate that cfDNA might be a promising alternative to detect trunk SSNVs. These results suggest that cfDNA may be complementary to tumor biopsies for disease monitoring and treatment selection in personalized medicine. Citation Format: Samuel S. Freeman, Ziao Lin, Gavin Ha, Ignaty Leshchiner, Justin Rhoades, Dimitri Livitz, Daniel Rosebrock, Sarah C. Reed, Gregory Gydush, Christopher Lo, Denisse Rotem, Atish D. Choudhury, Daniel G. Stover, Heather A. Parsons, Jesse S. Boehm, J Christopher Love, Matthew Meyerson, Paul Grandgenett, Michael A. Hollingsworth, Viktor A. Adalsteinsson, Gad Getz. Liquid biopsies identify trunk mutations and reflect multiple tumors in a patient [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr LB-225.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4_Supplement ( 2020-02-15), p. P5-01-03-P5-01-03
    Abstract: Background: Breast cancer (BC) may recur years to decades after initial treatment, leading to incurable, metastatic disease. Prior studies have shown blood biopsy can detect minimal residual disease (MRD), but not in all patients and often with very short lead time. Most efforts thus far have focused on tracking one or a few mutations via ctDNA, which may limit sensitivity. Here we sought to maximize the detection sensitivity of blood biopsies by tracking up to hundreds of individualized tumor mutations in cell-free DNA (cfDNA). Doing so enables us to break the detection ceiling imposed by the limited copies of each gene in the cell-free DNA in a blood draw. Methods: cfDNA was extracted from archival plasma samples (n=271) from 142 patients with stage 0-III BC enrolled prospectively onto two IRB-approved studies. We applied whole-exome sequencing (WES) to define up to several hundred mutations from each patient’s tumor. To limit potential errors, we employed strict criteria to select somatic SNVs to track using duplex sequencing in cfDNA. We required detection of ≥ 2 mutations for a cfDNA sample to be MRD+ and excluded any mutations also found in a patient’s own germline DNA. Results: We identified 142 patients treated for stage 0-III BC, who had postoperative blood and plasma samples available, and were monitored for distant recurrences for up to thirteen years. All patients had biopsy-proven BC, with 86 (61%) having HR+/HER2- BC, 31 (22%) having HR-/HER2-, or “triple negative” BC (TNBC), and 25 (18%) having HER2-positive disease. Three (2%) patients had stage 0 disease, 32 (23%) had stage I, 68 (42%) had stage II, and 39 (27%) had stage III BC at diagnosis. Archived plasma samples were collected post-operatively, at year 1, and at year 4. We created individualized assays targeting a median of 57 mutations (range 2 - 346) per patient. Reasoning that MRD status after completion of all local therapy and chemotherapy might best predict for distant recurrence, we conducted a landmark analysis at one year following surgery, and found all patients (n=6/6) with detectable MRD experienced recurrence (HR=21.2 (7.43-60.35)) in a median of 6.7 (range 3.4 - 15.8) months. Median lead time including all timepoints from first positive blood sample to recurrence was 18.9 (range: 3.4 - 39.2) months. Finally, in a multivariate model, MRD remained highly statistically significant independent of stage, subtype, and age at diagnosis. Conclusions: We present a novel approach to MRD tracking based on the premise that tracking many - rather than one or a handful of - mutations inherently increases sensitivity and that assay personalization maximizes sensitivity in a disease without multiple, recurrent mutations. To our knowledge, the lead time we show here is significantly longer than that seen in prior investigations, and if confirmed, could offer an opportunity to treat MRD long before the development of clinically apparent metastatic disease. Prospective studies are needed to determine whether earlier detection of MRD is clinically meaningful for patients. Citation Format: Heather A Parsons, Justin Rhoades, Sarah C. Reed, Greg Gydush, Priyanka Ram, Pedro Exman, Kan Xiong, Christopher Lo, Tianyu Li, Mark Fleharty, Greg Kirkner, Denisse Rotem, Ofir Cohen, Melissa Hughes, Shoshanna Rosenberg, Laura Collins, Kathy Miller, Brendan Blumenstiel, Carrie Cibulskis, Donna Neuberg, Samuel S. Freeman, Niall Lennon, Nikhil Wagle, Gavin Ha, Daniel G. Stover, Atish D. Choudhury, Gad Getz, Matthew Meyerson, Nancy U. Lin, Ian E. Krop, J. Christopher Love, G. Mike Makrigiorgos, Ann Partridge, Erika Mayer, Todd R. Golub, Viktor A. Adalsteinsson. Ultrasensitive detection of minimal residual disease in patients treated for breast cancer [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P5-01-03.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 6670-6670
    Abstract: Cancer immunotherapy with checkpoint blockade has improved survival and outcomes in melanoma, but still a majority of patients do not respond. Both high tumor mutation burden (TMB) and high T cell infiltration have been associated with response, but integrative models based on DNA or RNA assays have not been comprehensively explored and validated. Focusing on melanomas from patients receiving checkpoint blockade, we generated new and aggregated existing datasets of whole exome sequencing (WES) (n = 189 total) and bulk RNA sequencing (n = 154 total) to derive genomic and transcriptomic factors that predict survival and response to immunotherapy in melanoma. We quantified T and B cell infiltrates using rearranged T cell receptor (TCR) and immunoglobulin (Ig) sequences, respectively, from DNA or RNA sequencing. High levels of rearranged TCR reads or rearranged Ig reads in RNA-seq were associated with survival (P = 0.0046, P = 0.015) and response (P = 0.0034, P = 0.047). We created RNA-based metrics of T and B cell burden (TCBRNA or BCBRNA) by normalizing the number of rearranged TCR reads by the total number of mapped reads. When we analyzed WES data in patients for whom DNA and RNA were extracted from the same region, we found that the TCBDNA correlated with TCBRNA (rho = 0.73) and BCBDNA with BCBRNA (rho = 0.41), demonstrating that the level of lymphocyte infiltration can be estimated using rearranged TCR or Ig reads from tumor WES alone. We found that TCBDNA and BCBDNA both associated with survival (P = 0.0023 and 0.0089). In a combined model, patients with high TMB and high TCB DNA survived longer (P = 2.4e-4, HR = 2.68) and had a higher response rate (Fisher P = 0.028). This combined model was superior to models with TMB or TCBDNA alone. Similarly, patients with high TMB and high BCBDNA had longer survival and higher response rates (log-rank P = 0.0029, HR = 2.64, Fisher P = 0.015). We reanalyzed stage III/IV melanomas from TCGA and found that the TMB high, TCBDNA high subgroup had increased survival (P = 0.007). Next, clustering of tumor transcriptomes identified 5 tumor subtypes based on melanocyte differentiation, immune infiltration and keratin levels. These melanoma subtypes were associated with survival outcomes after immunotherapy (P = 0.019). We found that TBX3, a tumor-expressed transcription factor enriched in poorly differentiated melanomas, was over-expressed among non-responders within the immune-infiltrated subtype and among all patients (P = 3.9e-4, P = 8.7e-5). Patients whose tumors had high immune infiltrate and low expression of TBX3 had longer survival (P = 1.6e-5, HR = 3.39), however this subgroup did not have longer survival in an independent cohort (n = 73, P = 0.10, HR = 2.63). In conclusion, we demonstrate both RNA-based (immune infiltrate and tumor subtype) and DNA-based metrics (TMB/TCB or TMB/BCB) can be used as pre-treatment predictors of survival after checkpoint blockade in melanoma. Citation Format: Samuel S. Freeman, Moshe Sade-Feldman, Jaegil Kim, Chip Stewart, Arvind Ravi, Monica Arniella, Keren Yizhak, Ignaty Leshchiner, Liudmila Elagina, Oliver Spiro, Dimitri Livitz, Daniel Rosebrock, François Aguet, Jian Carrot-Zhang, Anna Gonye, Gavin Ha, Ziao Lin, Jonathan H. Chen, Dennie T. Frederick, Michal Barzily-Rokni, Marc R. Hammond, Hans Vitzthum, Shauna M. Blackmon, Yunxin J. Jiao, Donald P. Lawrence, Lyn M. Duncan, Anat Stemmer-Rachamimov, Jennifer A. Wargo, Keith T. Flaherty, Genevieve M. Boland, Ryan J. Sullivan, Matthew Meyerson, Gad Getz, Nir Hacohen. Combined signals from tumor and immune cells predict outcomes of checkpoint inhibition in melanoma [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 6670.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: JCI Insight, American Society for Clinical Investigation, Vol. 3, No. 21 ( 2018-11-2)
    Type of Medium: Online Resource
    ISSN: 2379-3708
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2018
    detail.hit.zdb_id: 2874757-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cell Reports Medicine, Elsevier BV, Vol. 3, No. 2 ( 2022-02), p. 100500-
    Type of Medium: Online Resource
    ISSN: 2666-3791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 3019420-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...