GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geshalter, Yaron  (2)
  • Moy, Christopher  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 895-895
    Abstract: Background: Lung squamous cell carcinoma (SqCC) arises in the epithelial layer of the bronchial airways and is often preceded by the development of premalignant lesions. However, not all premalignant lesions will progress to lung SqCC and many of these lesions will regress without therapeutic intervention. Understanding the molecular events that contribute to progression of premalignant lesions in the airway will allow us to identify biomarkers for early detection and develop therapeutic strategies for early intervention. Methods: Bronchial brushings and biopsies were obtained from high-risk smokers undergoing lung cancer screening by auto-fluorescence bronchoscopy and CT at the Roswell Park Cancer Institute. For each subject (n = 30), both premalignant lesions (PMLs) and the cytologically normal mainstem bronchus were sampled repeatedly over time (n = 288 samples). DNA and RNA were isolated from a total of 197 bronchial biopsies of PML (average of 5 per subject) and 91 bronchial brushings. DNA was also isolated from the blood to serve as a matched normal. Exome capture was performed using the Agilent SureSelect Human All Exon+UTR 70MB kit and sequenced to a mean depth of coverage of 75x (n = 85 samples from 22 subjects). RNA libraries were prepared with Illumina TruSeq (mRNA-Seq: n = 288 samples from 30 subjects and miRNA-Seq: n = 183 samples from 26 subjects). Results: We identified gene and miRNA expression changes associated with histological grade as well as progressive/stable disease. The Hippo pathway, Wnt signaling, p53 signaling, and immune-related pathways are modulated with histological grade and disease progression. Genes associated with histological grade in the cytologically normal airway and in the biopsies were significantly concordantly enriched (FDR & lt;0.05) demonstrating a strong relationship between the PMLs and the field of injury. The somatic mutation rate of PMLs displayed no significant association with histological grade (p = 0.65). Mutations in previously characterized lung cancer genes included TP53 (3%), CREBBP (3%), FAT1 (3%), and NOTCH1 (9%). Examining copy number alterations revealed a single metaplastic lesion with an arm-level amplification on chr5p containing TERT. The two lesions with the highest mutation rates ( & gt;3/Mb) were taken from adjacent sites over two time points in the same individual with a history of lung squamous cell carcinoma. These lesions had a significantly overlapping set of mutations (p = 2.2 × 10−17) indicating a common evolutionary ancestor, and contained mutations in CREBBP and FAT1, suggesting they are at increased risk for progressing to frank malignancy. Conclusions: We performed genomic profiling of PMLs in the airways of high-risk smokers. The gene expression and somatic alterations that were observed in known cancer genes may be among the earliest events in cancer development. Citation Format: Joshua D. Campbell, Catalina Perdomo, Sarah Mazzilli, Yaron Geshalter, Samjot S. Dhillon, Gang Liu, Sherry Zhang, Hangqio Lin, Jessica Vick, Christopher Moy, Evan Johnson, Matthew Meyerson, Suso Platero, Marc Lenburg, Mary Reid, Avrum Spira, Jennifer Beane. Genomic characterization of premalignant lung squamous cell carcinoma lesions. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 895.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3259-3259
    Abstract: Background: Lung squamous cell carcinoma (SqCC) arises in the epithelial layer of the bronchial airway and is often preceded by the development of premalignant lesions. However, not all premalignant lesions progress to lung SqCC and many regress without therapeutic intervention. Understanding the somatic alterations that contribute to progression of premalignant lesions in the airway will allow us to identify biomarkers for early detection and develop therapeutic strategies for early intervention. Methods: Airway biopsies were obtained from high-risk smokers undergoing lung cancer screening by auto-fluorescence bronchoscopy and chest CT at the Roswell Park Cancer Institute. For each subject (n=30), multiple premalignant lesions were sampled repeatedly over time (n=144 samples). One biopsy from each region was sent for pathological review while another biopsy was taken for molecular studies. DNA was also isolated from the blood or cytologically normal bronchial brushings to serve as a matched normal control. Exome capture was performed using the Illumina TruSeq Rapid Exome kit and sequenced to a mean depth of coverage of 120x at Uniform Services University and Walter Reed National Military Medical Center. Results: The median number of somatic mutations across all premalignant lesions was 0.73 per megabase (range: 0.10 - 9.8 per Mb) and displayed a modest association with histological grade (p=0.07). The most frequently mutated lung cancer genes included KMT2C (12%), NOTCH1 (11%), FAT1 (6%), TP53 (5%), and CDKN2A ( & lt;1%). Known oncogenic hotspot mutations were observed in PIK3CA (1%) and KRAS ( & lt;1%). The majority of lesions did not have overlapping sets of mutations with other samples from the same patient, indicating that most of these lesions arose from clonally distinct populations. The two lesions with the relatively high mutation rates ( & gt;7/Mb) were taken from adjacent sites over two time points in the same individual with a prior history of lung squamous cell carcinoma. These lesions had a significantly overlapping set of mutations including FAT1 indicating a common evolutionary ancestor. Conclusions: The somatic alterations observed in known cancer genes such as TP53, KMT2C, NOTCH1, and FAT1 may be among the earliest driver events in lung SqCC development and may be useful as biomarkers for early detection as well as targets for lung cancer interception. Citation Format: Joshua Campbell, Xijun Zhang, Samjot S. Dhillon, Catalina Perdomo, Sarah Mazzilli, Yaron Geshalter, Gang Liu, Sherry Zhang, Hanqiao Lin, Jessica Vick, Christopher Moy, Stefano Monti, Evan Johnson, Matthew Meyerson, Steven Dubinett, Suso Platero, Matthew Wilkerson, Clifton Dalgard, Marc Lenburg, Mary Reid, Jennifer Beane, Avrum Spira. The genomic landscape of premalignant lung squamous cell carcinoma lesions [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3259. doi:10.1158/1538-7445.AM2017-3259
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...